
Low-Power Listening Goes Multi-Channel

Beshr Al Nahas∗, Simon Duquennoy∗, Venkatraman Iyer†, Thiemo Voigt∗†
∗SICS Swedish ICT AB, Sweden

{beshr,simonduq,thiemo}@sics.se
†Uppsala University, Sweden

venkatraman.iyer@it.uu.se

Abstract—Exploiting multiple radio channels for communi-
cation has been long known as a practical way to mitigate
interference in wireless settings. In Wireless Sensor Networks,
however, multi-channel solutions have not reached their full
potential: the MAC layers included in TinyOS or the Contiki
OS for example are mostly single-channel. The literature offers
a number of interesting solutions, but experimental results were
often too few to build confidence. We propose a practical extension
of low-power listening, MiCMAC, that performs channel hopping,
operates in a distributed way, and is independent of upper layers
of the protocol stack. The above properties make it easy to
deploy in a variety of scenarios, without any extra configura-
tion/scheduling/channel selection hassle. We implement our solu-
tion in Contiki and evaluate it in a 97-node testbed while running
a complete, out-of-the-box low-power IPv6 communication stack
(UDP/RPL/6LoWPAN). Our experimental results demonstrate
increased resilience to emulated WiFi interference (e.g., data yield
kept above 90% when ContikiMAC drops in the 40% range).
In noiseless environments, MiCMAC keeps the overhead low in
comparison to ContikiMAC, achieving performance as high as
99% data yield along with sub-percent duty cycle and sub-second
latency for a 1-minute inter-packet interval data collection.

I. INTRODUCTION

Wireless Sensor Networks share their radio medium with
other ambient technologies, such as WiFi, Bluetooth, low-
power radios (e.g., 802.15.4), or even microwave ovens [1],
[2]. Dealing with such interference is of utmost importance in
order to attain the quality of service required by a given appli-
cation, in reliability, energy, and latency. In the IEEE 802.15.4
PHY standard, 16 independent channels are provided – some
colliding with the WiFi spectrum and others disjoint from it.

Using multi-channel MAC layers (as the Bluetooth stan-
dard does for example) has been long known as a practical and
efficient way to operate in noisy environments [3]. In addition
to wireless interference, the nature of radio propagation and
multi-path fading phenomenon cause challenging link dynam-
ics that affect the signal strength and packet reception rate in
relation to a number of parameters; namely, the used frequency,
the shape of the wireless path, the objects standing/moving in
the path and the location of the transceiver [4].

Although many studies showed the potential of multi-
channel in 802.15.4 [3], [4], and in spite of many MAC layers
available in the literature, the sensor networking community
is struggling to adopt multi-channel. This is reflected by the
default MAC layers in the two mainstream operating systems,
TinyOS and Contiki, all being single-channel. A possible
explanation to this is that existing solutions are either too
complex, require ideal scheduling of transmissions, or are
difficult to implement and use.

The IEEE 802.15.4-e amendment [5], published in 2012,
tackles this issue and proposes a number of channel hopping
solutions. TSCH for example, uses TDMA and channel hop-
ping and schedules transmissions along two dimensions: time
and channel. TSCH is extremely promising in terms of possible
performance and energy gains, but connecting it to upper layers
of the communication stack is non-trivial. For instance, using
TSCH in IPv6-based scenarios raises a number of challenges,
that led to the creation of the IETF Working Group 6TiSCH to
tackle this single issue. 802.15.4e also proposes CSL, a low-
power listening MAC that performs channel hopping. Low-
power listening MAC layers are interesting in that they require
zero configuration and emulate always-on links while having
the nodes sleep most of the time. State-of-the art low-power
listening solutions such as BoXMAC or ContikiMAC can
be easily deployed in large networks, performing multi-hop
routing while sleeping more than 99% of the time [6].

In this paper, we argue that extending low-power listening
with channel hopping is an effective and practical solution to
mitigating interference in low-power, multi-hop networks. We
design MiCMAC, a channel hopping variant of ContikiMAC.
MiCMAC has a design similar to CSL – both MAC layers were
in fact designed simultaneously and along the same principles.
Both are based on low-power listening and have nodes wakeup
periodically on different channels.

We implement MiCMAC in Contiki and validate it exper-
imentally in the 97-node testbed Indriya [7]. We run a full
low-power IPv6 stack including 6LoWPAN and RPL on top
of MiCMAC, demonstrating that our approach is practical and
independent from other layers in the protocol stack. This paper
presents – to the best of our knowledge – the most thorough
experimental validation of multi-channel low-power listening
in WSN.

Our experimental results show that on a noiseless channel
MiCMAC achieves high performance, close to that of Con-
tikiMAC. We attain end-to-end delivery ratios of 99% while
keeping the radio duty cycle below 1% and the packet latency
below 1 second. We compare to an integrated multi-channel
data collection solution, Chrysso [8], and show that MiCMAC
(with RPL) outperforms it in delivery ratio, duty cycle and
latency. We also run experiments where we inject controlled
interference to demonstrate the ability of MiCMAC to deal
with losses and continue operating in bursty environments.

II. RELATED WORK

Multi-channel communication has potential benefits for
wireless networks that possibly include: improved resilience

against external and internal interference, enhanced reliabil-
ity, reduced latency, and increased throughput [9]. Moreover,
frequency diversity implemented by frequency-hopping is sug-
gested to mitigate the effects of multipath fading [4]. In this
section, we review a selected set of existing low-power multi-
channel MAC protocols.

A number of multi-channel solutions for low-power sensor
networks focus on the issue of reducing interference between
nodes and improving throughput. However, most of these
works allocate fixed channels to data collection trees [10] or
sub-trees [11], a practice that is not only difficult to coordinate
over multiple hops, but also that does not handle the issue of
localized interference within a network. An exception is the
work by Le et al. [12] that allows nodes to independently
switch channels based on observed channel contention. How-
ever, the protocol design features specific policies for data
aggregation networks alone, as opposed to the predominant
class of data gathering WSNs. Multi-channel protocol such
as MC-LMAC [13], Y-MAC [14], MuChMAC [15] and EM-
MAC [16] typically allow nodes to switch channels inde-
pendently of one another. MC-LMAC [13], Y-MAC [14]
are inherently TDMA-based, which entails a need for time
synchronization between nodes. In contrast, MuChMAC [15]
and EM-MAC [16] facilitate asynchronous channel access with
a pseudo-random channel hopping sequence on every node.
Nodes execute a lightweight time synchronization primitive
to communicate with each other efficiently. Specifically, EM-
MAC introduces interesting features such as channel black-
listing, clock-drift estimation and correction. However, these
features make the rendezvous procedure between nodes more
difficult, requiring neighboring nodes to discover each other
before proceeding to broadcast. A noteworthy observation in
the aforementioned works is the lack of a routing solution
over multiple channels. Furthermore, in most cases, the ex-
perimental evaluation is restricted to networks comprising less
than 20 nodes. In contrast, large networks of up to 100 nodes
are witnessed to increased channel contention and message
collisions, which raises a concern of protocol scalability.

Chrysso [8] is a multi-channel solution that is specifically
designed for mitigating external interference in data collection
WSNs. Chrysso supposes that the network is formed as a
tree with a sink node, parent nodes and children nodes.
Each parent uses two channels for inbound and outbound
communication with children, and decides to hop either of the
channels when the channel quality degrades. Deviating from
other related multi-channel protocols, Chrysso interfaces to the
routing layer with an additional scan procedure that facilitates
neighborhood discovery over multiple channels. The core of
Chrysso’s functionality comprises a set of channel switching
policies that interface to both the MAC layer (i.e. X-MAC)
and the network layer (i.e. Collect). However, the specific
allocation of in and out-channels restricts its applicability to
data collection networks alone. In contrast, MiCMAC is suited
to general purpose applications and 6LoWPAN network stack
as it does not suppose a structure of any kind for it to operate.

The IEEE 802.15.4e amendment to the original 802.15.4
standard introduces a number of multi-channel MAC layers,
including TSCH and CSL. TSCH (Time Synchronized Channel
Hopping) employs TDMA and channel hopping such that it
schedules communications in two dimensions: time and fre-

quency. TSCH promises high reliability but has the drawback
that it requires schedules to operate. Defining a schedule that
copes with the dynamic nature of wireless communication and
the bursty IP traffic is a great challenge. In contrast, CSL
follows an unscheduled low-power listening approach. In CSL,
nodes periodically wake up to sense the radio medium and
hop the channel in an increasing order every wakeup. Senders
need to send long wakeup strobes before transmitting the actual
packet, but they can learn the receiver wakeup schedule later on
from the information included in acknowledgments. MiCMAC
employs a similar overall design with a few exceptions such
as that we use the actual data frame as the wakeup strobe,
and we employ pseudo-random channel hopping sequences.
Furthermore, we are not aware of any large-scale evaluation
of the CSL MAC (related experiments are limited to a handful
of nodes [17]), while we provide a practical implementation
and thorough evaluation of MiCMAC.

III. DESIGN OF MICMAC

This section covers the design of MiCMAC, a multi-
channel low-power listening MAC for WSNs. MiCMAC in-
herits its basic design from ContikiMAC [18] and extends it
to for efficient multi-channel support.

A. Overview

Since ContikiMAC proved to be very efficient in the single-
channel case [19], [6], we choose to inherit its design and
integrate channel hopping in it.

We can summarize the steps for communication between
two nodes in: (1) medium access; (2) finding receiver’s
wakeup-time and channel; (3) data transmission and acknowl-
edgment; (4) and dealing with losses/collisions. Moreover, we
need to take care of selecting wakeup channels and maintaining
wakeup time and channel for future communication with the
same receiver.

Idle nodes, which do not have packets to send, keep their
radios off for most of the time, and wake up periodically
to sense the radio with two short channel clear assessments
(CCA) spaced carefully to avoid falling in the inter-frame
period. The wake-up period is constant and shared by all nodes.
Each time a node wakes up to listen, it hops (switches) channel
according to a pseudo-random sequence. When a node detects
activity on the channel through CCA, it keeps the radio on
for a longer time trying to receive a potential frame. Only if a
frame is received correctly, the node sends an acknowledgment
frame; then, it goes back to sleep.

If a node S has a packet to send to a node R, it needs
to know the wake-up time and channel of R. Assuming
that it already has this information for all neighboring nodes
(described in more details later), S schedules the packet for
sending just before R’s expected wake-up, switches to R’s
expected channel, samples it to ensure it is clear, sends the
packet and waits for acknowledgment (ACK). If S receives
the ACK, it knows that communication was successful; thus,
it updates its information of R’s wake-up time and channel and
goes back to sleep. Otherwise, S retries the same steps. After a
number of failed retries, S assumes that its information of R’s
wake-up time and channel is wrong and needs to be updated.

ACK

CCA

CCACCACCA

Sender

Receiver

Data	strobes

U U U U U U U U U U U U UU A

R

CCA CCA

Fig. 1. MiCMAC Initial Rendezvous (4 Channels). The sender strobes over
one available channel until it receives an acknowledgment, for a maximum of
4 consecutive wakeup periods. The receiver wakes up periodically to sample
the channel with two short CCA. It hops through all available channels
according to its own sequence. In the figure, different colors signify the use
of different channels, with the exception that blue means reception.

B. Frequency Hopping

The choices made in this step affect the design of other
parts of MiCMAC; specifically, channel rendezvous and broad-
cast. Each node switches its channel periodically on every
wakeup cycle following a pseudo-random sequence. We gen-
erate the pseudo-random channel numbers using a Linear
Congruential Generator (LCG) [20]. We choose this kind of
generators because the sequences they generate are uniformly
distributed and they are computationally simple. With LCG,
the pseudo-random sequence X is defined as:

Xn+1 = (aXn + c) mod N, n ≥ 0

where N –the modulus– is the total number of available
channels, X0 is the seed (0 ≤ X0 < N), a is the multiplier
(0 ≤ a < N), and c is the increment (0 ≤ c < N).

We obtain the actual channel numbers from this sequence
by adding the first channel to X , i.e., 11 in the case of
IEEE 802.15.4.

The properties of the pseudo-random sequence depend on
the chosen parameters: a, c,N . We select these parameters
such that the generated sequences appear random and contain
each possible number in the range exactly once before repeat-
ing the whole sequence again (as described by Knuth [20]).
We use this property to our advantage when we want to find
a node’s wakeup channel. Note that any generated sequence
will be of length N . However, we can combine several of these
sequences to generate one longer sequence.

We assign each node in the network one sequence which
is parametrized with a set of tuples {< a, c >}, thus, the
length of each hopping sequence will be ‖{< a, c >}‖ × N .
The choice to use one short hopping sequence (i.e., of length
N) or a long sequence (i.e., formed from a combination of se-
quences) affects the initial channel rendezvous and broadcasts,
as explained in the next subsection.

We choose to do blind channel hopping because of simplic-
ity in the first place; as local blacklisting would involve some
overhead for synchronizing the blacklists among neighbors.
Secondly, previous work has shown that even random blind
channel hopping improves network connectivity, efficiency and
stability when compared to single-channel [3].

C. Unicast Transmission and Channel-lock Mechanism

Sending unicasts requires a continuous transmission of
preambles –which are copies of the data frame in our case–
until the receiver wakes up, receives and acknowledges the

ACK

CCA

CCA
Sender

Receiver

Data	strobes

CCA

U U A

R

Send	request

Fig. 2. MiCMAC Channel-locked Transmission. The sender anticipates
both the phase and channel of the target node’s next wakeup, making the
strobing shorter (saves energy and bandwidth).

frame. To make this process more efficient, ContikiMAC has
a phase-lock mechanism, where nodes learn their neighbor’s
schedule in order to anticipate their wakeup for the next
transmission. We extend ContikiMAC’s phase-lock with a
channel-lock to anticipate the wakeup channel of the target
node as well.

a) Initial Rendezvous: When communicating with a
neighbor for the first time, the sender picks any channel and
transmits strobes repeatedly for a maximum of W wakeup
periods, where W = N the number of channels when using
hopping sequences of length N , or W = 2N − 1 when using
a long hopping sequence. Doing so guarantees that an idle
receiver will wake up exactly once on the channel where
the strobing occurs, getting one opportunity to receive and
acknowledge the frame. The sender waits for a short period of
time between strobes to allow the ACK to be received. Figure 1
illustrates the initial rendezvous for unicast in the case of four
channels (and with a sequence of length 4).

b) Phase- and Channel-lock: Upon successful unicast
reception, the receiver sends an ACK frame that includes
the pseudo-random generator parameters a, c,X0 so that the
sender can compute the next wakeup channels. The sender
stores the time and channel of reception of the ACK, re-
spectively for phase- and channel-lock. Next time the same
pair of nodes communicates, the sender will (1) calculate
the next wakeup time, using unmodified ContikiMAC phase-
lock, and (2) calculate the next wakeup channel, by generating
the receiver’s next wakeup channel; taking into account the
number of periods elapsed since the last successful unicast.
This saves the sender from the long strobing incurred in
initial rendezvous. However, if the transmission fails for a
few subsequent tries, the sender repeats the initial rendezvous.
Figure 2 illustrates channel-locked unicast transmissions.

D. Broadcast Support

In ContikiMAC, broadcasts are supported by transmitting
non-acknowledged frames repeatedly for one wakeup period.
This gives the opportunity to every neighbor to receive the
frame exactly once.

To make broadcast transmissions possible in a channel
hopping scenario, we devise two variants of MiCMAC:

a) MiCMAC: We provide basic support for broadcast
in MiCMAC by strobing only one of the possible channels
continuously for N times the wakeup period (or 2N − 1
in the case of long sequences). This is similar to the initial
rendezvous for unicasts, but done with non-acknowledged
frames, as illustrated in Figure 3. The downside of this design
is the increased cost in energy and increased channel use,
especially for large N (many channels used).

CCA

CCACCACCA

Sender

Receiver

Broadcast

CCA

B B B B B B B B B B B B BB

R

CCA

B

CCA CCACCA

Receiver

CCA

R

CCA

Fig. 3. MiCMAC Broadcast (4 Channels). The sender strobes over one
channel for exactly 4 wakeup periods without expecting acknowledgments.

CCA

CCACCACCA

Sender

Receiver

Broadcast

B B B B

R

CCA

CCA CCA

Receiver

CCA

R

CCA

Fig. 4. MiCMAC-BC Broadcast (4 Channels). The sender strobes over
a dedicated broadcast channel for only one wakeup period. Receivers check
both their current unicast and the broadcast channel at every wakeup.

b) MiCMAC-BC: We provide an alternative solution
where nodes wake up on a dedicated broadcast channel at every
period, in addition to their baseline wakeup on the unicast
pseudo-random channel. Broadcast transmissions are always
done over this channel for a duration of only one wakeup
period, as illustrated in Figure 4. The downsides are (1)
reduced robustness as all broadcast occur on the same channel
and (2) increased baseline, where two wakeups are needed
instead of one at every period. This design can be extended
with channel hopping for the broadcast channel, where the
number of channels used for broadcast would be lower than
that used for unicast, resulting in a trade-off between MiCMAC
and MiCMAC-BC.

E. Miscellaneous Optimizations

c) Always-on Nodes: In order to reduce reception la-
tency for nodes that are always on (such as the border-router),
we do not use channel- and phase-lock when sending to
them. Instead, these always-on nodes change the channel more
frequently (we use a period of 10 ms, which can accommodate
up to two full 802.15.4 frames). Nodes wishing to send to
them simply pick any channel and start transmitting as early
as possible if the channel is clear.

d) Use of Predefined Hopping Sequences: Instead of
calculating the hopping sequences at runtime, we provide a
static table of all sequences used in the network. Each node
simply selects its sequence according to its MAC address.

e) Use of Short Hopping Sequences: Using short hop-
ping sequences (of size N , instead of long sequences formed
of several short ones), relieves the receiver from including
the channel index in ACK frames. The sender identifies the

receiver’s sequence uniquely, based on the receiver’s MAC
address. It can then infer the channel index by searching for
the current send channel in the receiver’s sequence, since each
sequence contains every possible channel exactly once.

IV. EXPERIMENTAL RESULTS

We validate MiCMAC experimentally in a 97-node testbed
and compare it against the state-of-the-art Chrysso [8] protocol.
We run a full low-power IPv6 stack on top of MiCMAC, per-
forming data collection over the standard RPL and 6LoWPAN
protocols. Finally, we inject controlled interference to study
how the different layers of the communication stack react, and
to measure the benefits of multi-channel operation.

A. Methodology

We implement MiCMAC in Contiki, based on Contiki-
MAC. We run all our experiments in Indriya testbed [7],
which at the time of our experiments features 97 TelosB
nodes spanning a three-floor office building. We use node #1,
in the middle of the top floor, as network root, so that we
have nodes up to two floors away from the destination. Our
application scenario is a periodic data collection where each
node transmits a 64-byte payload datagram to the root at an
average interval of 1 min (transmissions are jittered). The
network stack is a complete low-power IPv6 stack, with UDP
at the transport layer, RPL [21] in charge of routing, and
6LoWPAN as IPv6-to-802.15.4 adaptation layer. It is worth
mentioning that running MiCMAC did not require any change
in RPL routing nor other layers – we use the out-of-the-box
Contiki-2.7 network stack. At the MAC layer, we set the MAC
wakeup frequency to 8Hz (ContikiMAC’s default).

We run RPL for upwards traffic only (as the scenario is
a data collection), with ETX as a metric and the MRHOF
objective function. In this setting, RPL boils down to a gradient
collection protocol similar to CTP [22]1. The link estimator is
used as is even with MiCMAC: the link ETX between two
nodes is updated at every transmission attempt, independent
of the channel, resulting in an aggregated estimate over all
channels in use.

We compare three different protocol stacks:

RPL/ContikiMAC Using Contiki’s default power-saving
MAC and RPL implementation. This is our baseline, operating
over a single radio channel (unless explicitly mentioned, we
use channel 26, which yields the best results).

RPL/MiCMAC Our MiCMAC implementation running be-
low RPL. We use it in different settings, with the number of
channels ranging from 2 to 16.

Chrysso We compare the RPL-based solutions to
Chrysso [8], a multi-channel collection protocol where
MAC and routing are integrated (detailed in §II).

We focus on the following key metrics:

Link-Layer Packet Reception Rate (PRR) Represents the
transmission success rate for packets, at the MAC layer.
Maximizing this metric is not an end goal for the application,

1For more details, we refer the reader to the RPL RFC [21].

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
ChanneltID

0

20

40

60

80

100

Li
n
k-

La
y
e
rt

P
R

R
tc

m
s

ContikiMAC

2 4 8 16
Number of channels

MiCMAC

MiCMAC-BC

(a) Link Quality

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
ChannelM ID

0

20

40

60

80

100

E
n
d
-t

o
-E

n
d
MP

D
R

Mc
b

sM

ContikiMAC

2 4 8 16
Number of channels

MiCMAC

MiCMAC-BC

Chrysso

(b) End-to-end Data Yield

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Channel ID

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Du
ty

 C
yc

le
 (%

)

ContikiMAC

2 4 8 16
Number of channels

MiCMAC
MiCMAC-BC
Chrysso

(c) Energy

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Channel ID

0

5

10

15

20

La
te

nc
y

(s
)

ContikiMAC

2 4 8 16
Number of channels

MiCMAC
MiCMAC-BC
Chrysso

(d) Latency

Fig. 5. Performance of MiCMAC, ContikiMAC and Chrysso with Different Channel Settings. The performance of MiCMAC with 2 to 4 channels is
similar to that of ContikiMAC running on the best available channels (26, 15, 25, or 20). As the number of channels increases (to 8 or 16), worse channels are
being used, and MiCMAC results in a compromise between the channels in use. Chrysso exhibits low PDR overall, but also shows better scalability with the
number of channels than MiCMAC (since MiCMAC has CSMA backoff and broadcast strobe time proportional to the number of channels).

but rather an indicator of the quality of the radio medium
during a given experiment.

End-to-End Packet Delivery Ratio (PDR) Represents the
transmission success rate for datagrams, computed end-to-end,
from the initial sender to the network root over multiple hops.
It tells how reliable the protocol is.

Duty Cycle We use duty cycle, the portion of time where
the radio is turned on, as a platform-independent metric for
power. It tells how energy-efficient the protocol is. We measure
the duty cycle inline using Contiki’s energy profiler [23].

Latency We measure latency as the time difference between
the reception of datagrams at the root and its initial trans-
mission time from the originator. We base the measurement
on testbed timestamps of the serial output from the sender
and receiver nodes. For some applications (e.g., alarm, live
monitoring), minimizing end-to-end latency is a key goal.

We run each experiment for a duration of 60 minutes and
extract our results from the last 30 minutes, where the topology
is most stable. Note that we observe an initial network setup
phase of about 10 minutes in general, after which RPL keeps
doing minor topology adjustments but the overall performance
has converged. We set the transmission power to 0 dBm.
We repeat each experiment at least 3 times. Data points
are averaged over all iterations, error bars represent standard
deviation across the iterations.

B. Effect of Multi-channel on Performance

We first run ContikiMAC on all individual 16 channels
of 802.15.4 to get a picture of each channel’s quality, and
to measure how RPL/ContikiMAC operate in different chan-
nel conditions. From this experiment, we sort the channels
by decreasing average PRR. We then run the multi-channel
protocols (MiCMAC, MiCMAC-BC, Chrysso), with 2, 4, 8 or

16 channels (we always pick the N best channels according
to the aforementioned single-channel PRR measurements). It
should be mentioned that these per-channel measurements are
not strictly required for MiCMAC to operate, but we do them
for the sake of fair comparison.

Figure 5a shows the average link PRR obtained in different
experiments. It shows that the testbed is subject to WiFi
interference, with lower PRR at the most common WiFi
channels, and with the best PRR at the 4 WiFi-free channels:
15, 20, 25, and 26. Those are the 4 channels we use in further
4-channel experiments.

In reliability (Figure 5b) and duty cycle (Figure 5c),
MiCMAC keeps the overhead over the best ContikiMAC
results at a reasonable level, in spite of the increased cost for
broadcast (for instance, channel 15 yields a 99.7% PDR and
0.75% duty cycle vs. 99%, 0.81% duty cycle for MiCMAC
with 4 channels). MiCMAC suffers from a latency increase
from 0.35s (ContikiMAC, channel 15) to .91s (MiCMAC,
4 channels). This is explained by the longer CSMA back-off
that MiCMAC uses, multiple of the number of channels in
use. When using 16 channels, the performance degrades due to
using all (including bad) channels and due to increased cost of
broadcast and channel-lock operations. MiCMAC-BC achieves
performance similar to MiCMAC, except in duty cycle, where
the extra wakeup on a broadcast channel increases the baseline
consumption (the trade-offs of using a dedicated broadcast
channels are evaluated in more details in §IV-E).

In contrast, Chrysso suffers from a reduced data yield
(about 88% for 4 and 8 channels, and close to 60% for
the case of 16 channels), and results in higher duty cycle
than MiCMAC. The reduced data yield is attributed to the
occurrence of asymmetric links between child nodes and their
parents on the testbed. Especially, when a child node does not
receive acknowledgments for its data packets on account of
link asymmetry, it eventually executes the channel scanning

routine to find a new neighbor. As the decision to perform
channel scanning is deferred until the control loops fail to re-
connect the child to the routing tree, the child node incurs
a significant delay that directly affects data yield. Likewise,
the higher duty cycle achieved by Chrysso is attributed to the
frequent use of channel scanning on account of asymmetric
links. Overall, we find that MiCMAC outperforms Chrysso on
all the three metrics.

Our experiments show that the set of channels used
has tremendous impact on performance. Although MiCMAC
would still have a good chance of communication due to
channel hopping, we would recommend to carefully profile
every individual channel in pre-deployment tests. In our results
for example, where the 4 WiFi-free channels show much
better performance than others, MiCMAC sees its performance
degrade when using more than 4 channels. Performing inline
channel blacklisting would be a possible extension of MiC-
MAC, but this would require some extra control traffic for
nodes to notify their neighbors upon every blacklist update.

Overall, this series of experiments shows that MiCMAC
operates over multi-channel with little overhead, with end
performance similar to that of ContikiMAC experiments over
the same set of channels.

C. Resilience to External Interference

We evaluate the efficacy of MiCMAC when it comes
to recovering from external interference. To experiment in
controlled environment, we use WiFi-free channels only, i.e.,
15, 20, 25, and 26, but inject emulated WiFi interference using
the JamLab tool [24] over a single channel (we pick the best
channel, 26). We set 4 nodes (id #2, #4, #5, and #12) close
to the root to generate WiFi interference following JamLab’s
implementation of the Garetto model [24], emulating an access
point with 25 hosts (which results in a measured loss rate of
about 81% for nodes next to the interference source). We use
4 nodes in order to widen the range of interference in a setting
where all nodes in the testbed use the same transmission power
of 0 dBm. We periodically turn the interferer nodes on and off
at a 5 minute interval to observe how different protocols react
to changes between bursty and noiseless environment.

Figure 6 shows how different metrics evolve during the
course of the experiment, for ContikiMAC and for MiCMAC
in 2-channel or 4-channel settings. A first observation is that
MiCMAC, even when using no more than 2 channels, keeps its
reliability high during interference periods (above 90%), while
ContikiMAC drops down to around 40% PDR. This is ex-
plained by channel diversity: when losses occur on a channel,
the next transmission attempt, on a different channel, does not
necessarily suffer from the same interference. Consequently,
losses are largely hidden from the routing layer, resulting
in few RPL parent switches, and a more stable topology.
In contrast, ContikiMAC compensates losses with link-layer
retransmissions, increasing duty cycle and latency. Note that
RPL routing protocol reacts accordingly: certain links are
classified as bad (high ETX), forcing nodes to switch parent.
As a result, better links are used, which explains the increase
of PRR on channel 26 during the course of the experiment. A
downside of this topology adaptation is increased hop count,
which occurs during the first interference period and only in
ContikiMAC case.

0
20
40
60
80

100

E
n
d
Tt

o
TE

n
d

P
D

R
aw

3
#

ContikiMAC

Interference

MiCMAC5a2achannels MiCMAC5a4achannels

1

10

100

La
te

n
cy

aw
s#

0

1

2

3

4

D
u
ty

aC
y
cl

e
aw

3
#

0

20

40

60

80

P
a
re

n
ta

S
w

it
ch

e
s

wL
pm

in
u
te

#

0

50

100
ch

2
6

aL
in

kT
la

y
e
r

P
R

R
aw

3
#

0 10 20 30 40 50 60
Timeawminutes#

0

2

4

6

H
o
p
aC

o
u
n
t

Fig. 6. Effect of External Interference on ContikiMAC and MiCMAC.
MiCMAC increases robustness to external interference through channel hop-
ping, resulting in higher packet delivery ratio, lower latency and duty cycle
than ContikiMAC. MiCMAC hides most of the link losses to the upper layer,
and does not force RPL to react during interference (fewer parent switches
and no change in hop count).

This experiment shows that unlike ContikiMAC, MiCMAC
successfully recovers from interference by hiding link losses to
upper layers, keeping the topology stable and application-layer
metrics high.

D. Topology

As found in the above experiments, channel conditions
affect the routing topology and the resulting hop count. Fig-
ure 7 gives a closer look at the resulting topology in different
scenarios.

Figure 7a shows a sample (and typical) topology obtained
when running ContikiMAC on channel 13, i.e., the worst
observed channel. The resulting topology has up to 6 hops. In
contrast, when running on the best channel (26), the topology
is more compact, with only 4 hops, because the nodes are
able to reach further (see Figure 7b). Interestingly, running
MiCMAC over 4 channels (see Figure 7c) results in an even
more compact topology, with now only one node 4 hops away

floor 3
floor 2
floor 1

Root

Legend:

(a) RPL / ContikiMAC on Channel 13
hops 2.42
neighbors 13
Rank (ETX) 5.78
Parent switches / min 6

Root

(b) RPL / ContikiMAC on Channel 26
hops 2.48
neighbors 17.1
Rank (ETX) 2.65
Parent switches / min 0.62

Root

(c) RPL / MiCMAC on 4 Channels
hops 2.16
neighbors 17.4
Rank (ETX) 2.59
Parent switches / min 0.12

Fig. 7. RPL Topology Obtained with Different Channel Settings. When running on top of ContikiMAC in bad channel conditions (channel 13, PRR of
42.8%), RPL builds a topology with up to 6 hops. On a good channel (channel 26, PRR of 93%), nodes can reach farther as no more than 4 hops are required
to connect the network. MiCMAC, through channel diversity, increases the number of usable links, making it possible for RPL to build an even more compact
topology, with most nodes in the [1-3]-hop range.

0.3 0.5 1.1 2.2 4.4 8.7 17.5
TrickleBMaxBPeriodB(min)

0

10

20

30

40

50

60

P
ro

p
o
rt

io
n
Bo

fB
B

ro
a
d
ca

st
sB

(-
) MiCMAC

MiCMAC-BC

(a) Broadcast Proportion of Total Traf-
fic

0.3 0.5 1.1 2.2 4.4 8.7 17.5
TrickletMaxtPeriodt(min)

90

92

94

96

98

100

E
n
d
-t

o
-e

n
d
tP

D
R

t(
A

)

MiCMAC

MiCMAC-BC

(b) End-to-end Data Yield

0.3 0.5 1.1 2.2 4.4 8.7 17.5
Trickle Max Period (min)

0

1

2

3

4

5

Du
ty

 C
yc

le
 (%

)

MiCMAC
MiCMAC-BC

(c) Energy

0.3 0.5 1.1 2.2 4.4 8.7 17.5
Trickle Max Period (min)

0.0

0.5

1.0

1.5

2.0

2.5

La
te

nc
y

(s
)

MiCMAC
MiCMAC-BC

(d) Latency

Fig. 8. MiCMAC with and without a Broadcast Channel in more or
less Broadcast-intensive Scenarios. The dedicated broadcast channel proves
useful in broadcast-intensive cases, where it saves energy (cheaper strobing)
and improves latency (less internal interference). With less frequent broadcasts
(e.g. Trickle max period of 17.5 seconds), both protocols perform similarly
except in energy, where the broadcast channel costs more than it saves.

from the root. This is explained by channel diversity, which
increases the number of usable links due to different signal
propagation obtained when hopping to a new channel. Note
that channel diversity also leads to a more stable topology,
as reflected by the reduced number of parent switches. This
behavior helps MiCMAC reaching high performance, both
under interference and in good channel conditions.

0.3 0.5 1.1 2.2 4.4 8.7 17.5
Trickle Max Period (min)

0

1

2

3

4

5
Du

ty
 C

yc
le

 (%
)

Tx
Rx
MAC Wakeups

(a) MiCMAC

0.3 0.5 1.1 2.2 4.4 8.7 17.5
Trickle Max Period (min)

0

1

2

3

4

5

Du
ty

 C
yc

le
 (%

)

Tx
Rx
MAC Wakeups

(b) MiCMAC-BC

Fig. 9. Energy Profiles of MiCMAC with and without Broadcast Channel.
With a dedicated broadcast channel and in broadcast-intensive scenarios, the
reduced cost for broadcast transmissions outweighs the overhead of checking
an extra channel at every wakeup.

E. Optimizing for Unicast vs. Broadcast

We finally look at the tradeoff of running MiCMAC with or
without a dedicated broadcast channel, under both broadcast-
intensive or unicast-intensive settings. To this end, we vary
the maximum interval of the RPL beaconing (based on a so-
called ”Trickle” timer), within the range 214ms (0.3 min) to
220ms (17.5 min) (the latter being RPL’s default). As Figure 8a
shows, this results in broadcasts constituting from about 50%
of the overall traffic (when the Trickle max period is 0.3 min)
down to about 2.5% (with Trickle max period of 17.5 min).

In broadcast-intensive scenarios (Trickle max period be-
tween 0.3 min and 1.1 min), MiCMAC-BC performs best:
its cheaper broadcast strobing length reduces contention
and energy use. The crossing point between MiCMAC and
MiCMAC-BC is at a Trickle max period of about 1 min,
i.e., in a setting where 25% of the overall traffic is broadcast.
This holds for PDR (Figure 8b), Duty Cycle (Figure 8c) and
Latency (Figure 8d). In unicast-intensive scenarios (Trickle
max period above 1.1 min), MiCMAC-BC performs similarly
to MiCMAC in PDR and latency but results in a higher
duty cycle. Looking at where energy is spent in more details

(Figure 9), we see that MiCMAC-BC have a more expensive
wakeup as it has to check the broadcast channel periodically.

Another fact that is worth noting when looking at the Tx/Rx
ratio in Figure 9 is MiCMAC-BC occupies the channel less
than MiCMAC does. This is explained by shorter broadcast
strobes and shorter channel-lock strobes as both of them
happen on one channel only. This could be exploited to
minimize interference with nearby networks.

V. CONCLUSION

We design MiCMAC, a channel hopping extension to low-
power listening. The asynchronous and unscheduled nature of
MiCMAC makes it practical in low-power IP scenarios. We
implement our protocol in Contiki and run it in a 97-node
testbed, running a complete low-power IPv6 stack, with RPL at
the routing layer. MiCMAC achieves performance that makes it
suitable in very demanding scenarios, conciliating 99% end-to-
end reliability, sub-percent duty cycle and sub-second latency.
Our experiments with injected external interference show that
MiCMAC hides losses from the routing layer, resulting in
a more stable topology. It maintains high reliability even
during heavily interfered periods, where ContikiMAC drops
its delivery ratio below 40%.

ACKNOWLEDGMENT

This research has been supported by SSF and the
EC projects with contract number FP7-ICT-2011.1.3-288879
(CALIPSO) and INFSO-ICT-317826 (RELYonIT).

REFERENCES

[1] B. Azimi-Sadjadi, D. Sexton, P. Liu, and M. Mahony, “Interference ef-
fect on ieee 802.15. 4 performance,” in Proceedings of 3rd International
Conference on Networked Sensing Systems (INNS), Chicago, IL, 2006.

[2] C. A. Boano, T. Voigt, N. Tsiftes, L. Mottola, K. Römer, and
M. A. Zúñiga, “Making sensornet mac protocols robust against
interference,” in Proceedings of the 7th European conference on
Wireless Sensor Networks, ser. EWSN’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 272–288. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-11917-0 18

[3] T. Watteyne, A. Mehta, and K. Pister, “Reliability through frequency
diversity: why channel hopping makes sense,” in Proceedings of
the 6th ACM symposium on Performance evaluation of wireless ad
hoc, sensor, and ubiquitous networks, ser. PE-WASUN ’09. New
York, NY, USA: ACM, 2009, pp. 116–123. [Online]. Available:
http://doi.acm.org/10.1145/1641876.1641898

[4] T. Watteyne, S. Lanzisera, A. Mehta, and K. S. J. Pister, “Mitigating
multipath fading through channel hopping in wireless sensor networks,”
in ICC. IEEE, 2010, pp. 1–5.

[5] T. I. 802.15.4e Task Group, “Ieee standard for local and metropolitan
area networks–part 15.4: Low-rate wireless personal area networks
(lr-wpans) amendment 1: Mac sublayer,” IEEE Std 802.15.4e-2012
(Amendment to IEEE Std 802.15.4-2011), April 2012.

[6] S. Duquennoy, O. Landsiedel, and T. Voigt, “Let the Tree Bloom:
Scalable Opportunistic Routing with ORPL,” in Proceedings of the
International Conference on Embedded Networked Sensor Systems
(ACM SenSys 2013), Rome, Italy, Nov. 2013.

[7] M. Doddavenkatappa, M. C. Chan, and A. Ananda, “Indriya: A Low-
Cost, 3D Wireless Sensor Network Testbed,” in Proceedings of the Con-
ference on Testbeds and Research Infrastructures for the Development
of Networks & Communities (TridentCom), 2011.

[8] V. Iyer, M. Woehrle, and K. Langendoen, “Chrysso - a multi-channel
approach to mitigate external interference.” in SECON. IEEE, 2011.

[9] B. Raman, K. Chebrolu, S. Bijwe, and V. Gabale, “PIP: A Connection-
Oriented, Multi-Hop, Multi-Channel TDMA-based MAC for High
Throughput Bulk Transfer,” in Proceedings of the International Confer-
ence on Embedded Networked Sensor Systems (ACM SenSys), Zürich,
Switzerland, 2010.

[10] C. Liang, J. Liu, L. Luo, A. Terzis, and F. Zhao, “Dcnet: A high-
fidelity data center sensing network,” in Proceedings of the International
Conference on Embedded Networked Sensor Systems (ACM SenSys),
2009.

[11] Y. Wu, J. A. Stankovic, T. He, and S. Lin, “Realistic and efficient multi-
channel communications in wireless sensor networks,” in INFOCOM
2008. The 27th Conference on Computer Communications. IEEE.
IEEE, 2008, pp. 1193–1201.

[12] H. K. Le, D. Henriksson, and T. Abdelzaher, “A practical multi-
channel media access control protocol for wireless sensor networks,”
in Proceedings of the 7th international conference on Information
processing in sensor networks. IEEE Computer Society, 2008, pp.
70–81.

[13] O. D. Incel, P. Jansen, and S. Mullender, “Mc-lmac: A multi-channel
mac protocol for wireless sensor networks,” Centre for Telematics
and Information Technology University of Twente, Enschede, The
Netherlands, Tech. Rep. TR-CTIT-08-61, 2008.

[14] Y. Kim, H. Shin, and H. Cha, “Y-mac: An energy-efficient
multi-channel mac protocol for dense wireless sensor networks,”
in Proceedings of the 7th international conference on Information
processing in sensor networks, ser. IPSN ’08. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 53–63. [Online]. Available:
http://dx.doi.org/10.1109/IPSN.2008.27

[15] J. Borms, K. Steenhaut, and B. Lemmens, “Low-overhead dynamic
multi-channel mac for wireless sensor networks,” in EWSN, 2010, pp.
81–96.

[16] L. Tang, Y. Sun, O. Gurewitz, and D. B. Johnson, “Em-mac:
a dynamic multichannel energy-efficient mac protocol for wireless
sensor networks,” in Proceedings of the Twelfth ACM International
Symposium on Mobile Ad Hoc Networking and Computing, ser.
MobiHoc ’11. New York, NY, USA: ACM, 2011, pp. 23:1–23:11.
[Online]. Available: http://doi.acm.org/10.1145/2107502.2107533

[17] S. Bhadra, S.-H. Choi, Y. Sun, and X. Lu, “Demo: Achieving a
10x lifetime increase with ieee 802.15.4e motes,” in Proceedings of
the International Conference on Embedded Networked Sensor Systems
(ACM SenSys). New York, NY, USA: ACM, 2011, pp. 375–376.

[18] A. Dunkels, “The ContikiMAC Radio Duty Cycling Protocol,” Swedish
Institute of Computer Science, Tech. Rep. T2011:13, 2011.

[19] M. Kovatsch, S. Duquennoy, and A. Dunkels, “A Low-Power CoAP
for Contiki,” in Proceedings of the Workshop on Internet of Things
Technology and Architectures (IEEE IoTech 2011), Valencia, Spain, Oct.
2011.

[20] D. E. Knuth, The art of computer programming, volume 2 (3rd ed.):
seminumerical algorithms. Boston, MA, USA: Addison-Wesley Long-
man Publishing Co., Inc., 1997.

[21] T. Winter (Ed.), P. Thubert (Ed.), and RPL Author Team, “RPL: IPv6
Routing Protocol for Low power and Lossy Networks,” Mar. 2012, rFC
6550.

[22] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Col-
lection Tree Protocol,” in Proceedings of the Conference on Embedded
Networked Sensor Systems (ACM SenSys), 2009.

[23] A. Dunkels, F. Österlind, N. Tsiftes, and Z. He, “Software-based On-line
Energy Estimation for Sensor Nodes,” in Proceedings of the Workshop
on Embedded Networked Sensor Systems (IEEE Emnets), 2007.

[24] C. Boano, T. Voigt, C. Noda, K. Römer, and M. Zúñiga, “JamLab:
Augmenting Sensornet Testbeds with Realistic and Controlled Interfer-
ence Generation,” in Proceedings of the 10th international conference
on information processing in sensor networks (IPSN), 2011.

