
An Emulation-based Method for Lifetime Estimation
of Wireless Sensor Networks

Wilfried Dron∗, Simon Duquennoy†, Thiemo Voigt†‡, Khalil Hachicha∗ and Patrick Garda∗
∗UPMC Univ Paris 6, UMR 7606, Laboratoire d’Informatique de Paris 6;

CNRS, UMR7606, LIP6;
F-75005, Paris, France

Email: {wilfried.dron,khalil.hachicha,patrick.garda}@upmc.fr
†SICS Swedish ICT AB, Sweden

Email: {simonduq,thiemo}@sics.se
‡Uppsala University, Sweden

Abstract—Lifetime estimation in Wireless Sensor Networks
(WSN) is crucial to ensure that the network will last long enough
(low maintenance cost) while not being over-dimensioned (low
initial cost). Existing solutions have at least one of the two
following limitations: (1) they are based on theoretical models or
high-level protocol implementations, overlooking low-level (e.g.,
hardware, driver, etc.) constraints which we find have a significant
impact on lifetime, and (2) they use an ideal battery model
which over-estimates lifetime due to its constant voltage and its
inability to model the non-linear properties of real batteries. We
introduce a method for WSN lifetime estimation that operates on
compiled firmware images and models the complex behavior of
batteries. We use the MSPSim/Cooja node emulator and network
simulator to run the application in a cycle-accurate manner and
log all component states. We then feed the log into our lifetime
estimation framework, which models the nodes and their batteries
based on both technical and experimental specifications. In a case
study of a Contiki RPL/6LoWPAN application, we identify and
resolve several low-level implementation issues, thereby increasing
the predicted network lifetime from 134 to 484 days. We compare
our battery model to the ideal battery model and to the lifetime
estimation based on the radio duty cycle, and find that there is
an average over-estimation of 36% and 76% respectively.

I. INTRODUCTION

The network lifetime is a key parameter in Wireless Sen-
sor Network (WSN) characterization [1]. Its accessibility at
early design stages (e.g., the firmware development) could
enhance the efficiency of the application and the network
by providing the developers with useful insights. Estimating
lifetime, however, is challenging. It typically requires a net-
work simulator, a detailed description of the application, an
accurate battery model and a consideration of the hardware
behavior/limitations.

The literature offers several solutions for WSN lifetime
estimation. Most of them have a number of limitations, for
example (1) they often use high-level descriptions to model
the application in combination with (2) an ideal battery model
(if they use a battery model at all) and/or (3) do not model the
electrical behavior of the hardware components. To address
these issues, we present a method that combines a node
emulator, a technical specification-based battery model and
a lifetime estimation tool (c.f., Fig. 1). The node emulator
executes the application firmware, compiled for its target
micro-controller/platform, in the network simulator. Built on
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Fig. 1. Lifetime Estimation Method: from a MSP430 application firmware
to its lifetime estimation. The firmware is designed iteratively based on the
application objectives and output of our lifetime predictor. This method also
allows to quantify the impact of application and network layer design choices
on power consumption.

technical specifications, our battery model takes into account
the most important characteristics of the battery, including
parameters such as the non-linear discharge curve and supply
voltage drifts. By combining our battery model with the
emulated application, our lifetime estimation tool estimates
the lifetime taking into account the electrical characteristics
of the hardware (e.g., cut-off voltage or current consumption
variations with supply voltage).

We demonstrate our method in a case study on a
RPL/6LoWPAN-based data collection application. The fine-
grained output of our lifetime estimation tool made it pos-
sible to redesign certain drivers and low-level aspects of the
firmware. As a result, we increased the predicted application
lifetime by a factor of 3.6 on the average, while not altering its
operation. We also present experimental results that compare
our technical specification-based lifetime prediction model to
an ideal battery model and to duty cycle based estimation.
Our results show that the ideal battery model and the duty
cycle based overestimate the lifetime with 36% and 76%
respectively.

This paper is organized as follows. The next section
presents the background of this work and discusses related
work. Section III details our method. Section IV presents a
case study that shows how we used our tool to increase the
application lifetime of a data collection network by a factor of
three. We then compare in Section V the ideal battery model
to a technical-specifications-based battery model in several
scenarios. Before concluding, we discuss the limitations of our
approach in Section VI.



II. BACKGROUND AND RELATED WORK

Before reviewing the existing lifetime prediction solutions,
we start this section with a short explanation about the ap-
plication modeling and the battery behavior. We then discuss
related work.

A. Application Modeling

Application software can be modeled at different levels of
abstraction, resulting in different complexity/accuracy trade-
offs. As an example, emulators like MSPSIM [2] have a
description level that is as low as the instruction of the MCU.
They run the exact same firmware image, compiled for the
target platform, as the actual application. As a result, there is
no difference between the application modeled using emulation
and the executed application. In contrast, TOSSIM [3] cross-
compiles the application code and runs it directly on top of an
abstracted hardware. Consequently, some applications that can
run into the simulator might not run on the target platform [4].
To summarize, there is a tradeoff between the description level
and the performance of the simulation: the higher the level of
description, the faster the simulation and the lower the level
of description, the more accurate the simulation.

B. Battery Behavior

Primary batteries are electro-chemical power sources. In
contrast with wired power sources, they carry a limited amount
of energy. This amount of energy is called nominal capacity
if the battery is new or residual capacity (or residual in short)
if it has been partially used.

The capacity (nominal or residual) varies with the ambient
temperature and the instantaneous current draw (variation with
the current draw is also known as capacity-rate effect) [5], [6].
In other words, the available amount of energy changes over
time according to the aforementioned factors. The term effec-
tive capacity refers to the energy actually available considering
battery’s temperature and current draw. Note that a specific
current draw can produce a drift in the battery supply voltage
due to its internal resistance. Furthermore, the supply voltage
also varies with the residual and the temperature.

One other property of batteries is the relaxation effect [7],
[8]. When a high current is drawn from the battery, its capacity
decreases which implies that the available energy is lower than
the nominal value. This assumption is valid if the draw remains
the same until the end of the battery life. If, for instance, the
current draw returns to a value that is beyond the nominal
current, the battery will recover some capacity.

C. WSN Lifetime Estimation

There exist number of lifetime estimation tools for WSN
based on network simulators with different levels of abstrac-
tion.

One notable example is mTOSSIM [9], which extends
the TinyOS [10] simulator TOSSIM [3] to enable lifetime
estimation. It does so using a super-capacitor to model the
power supply of the nodes. The super-capacitor behavior is
very different from battery behavior (c.f., Section II-B). As
a consequence, this model cannot be used to estimate the
lifetime of battery-operated nodes. The main drawbacks of

mTOSSIM are the lack of a suitable battery model and the
fact that the code is cross-compiled with TOSSIM, ignoring the
hardware constraints such as thin-timing and hardware latency.
The latter drawback is also shared by PowerTOSSIM [11] and
PowerTOSSIM Z [12], other solutions based on TOSSIM.

Network simulators such as NS-2/3 [13] or OM-
NeT++ [14], [15] run high-level protocol implementations,
and are not aimed at lifetime estimation. The Energy Frame-
work [16] is an OMNeT++ extension for power consumption
and lifetime estimation. While the initial release of this frame-
work has been included in other frameworks like MiXiM [17]
or Mobility [18], its lifetime estimation relies on an ideal
battery model. Mikhaylov and Tervonen have addressed this
limitation [19] by introducing a different battery model that
they validated experimentally. Unfortunately, this validation
does not consider battery supply voltage variations due to the
current draw. Furthermore, it neglects the internal resistance
of the battery and the relaxation effect. Another OMNeT++
framework extension has been introduced to address this
issue [20], enabling low level description of the hardware
characteristics. It provides also a way to model any battery
using its technical specification.

Compared to our approach, the above solutions share the
limitation of simulating abstracted applications that hide low-
level implementation aspects that we capture through firmware
emulation. To summarize, network lifetime estimation using
(1) an emulated application with a (2) non-ideal battery model
and a (3) low-level description of the node hardware has not
yet been achieved.

III. APPROACH

In our lifetime estimation method, we first emulate the
target application firmware. Based on the emulation results,
we then predict the network lifetime. This can be used by
application designers to predict network lifetime and to design
their system iteratively. Our method (illustrated in Figure 1)
consists in the following steps:

1) Firmware Design Designing and compiling the ap-
plication firmware;

2) Firmware Emulation Emulating the firmware (pos-
sibly in a multi-node scenario where the radio
medium is simulated);

3) Lifetime Prediction Predicting the lifetime from the
emulation traces with our specification-based battery
model;

4) Design Iteration Draw conclusions. Loop over to
step 1 as long as needed.

This method has several advantages. First, by working
on the actual application firmware, it avoids the common
pitfall of ignoring certain low-level implementation aspects,
or overlooking the effect of a given component (e.g., frequent
MCU wakeups, in a scenario that was initially thought as
radio-intensive). Second, by using a specification-based battery
model rather than an ideal model, we take into account the non-
linear properties of batteries, giving results that are both more
conservative and more accurate. This method is well-suited
for iterative design, where the application designer refines the
firmware until it attains the application performance objectives
(e.g., in reliability and latency) while reaching a given target



lifetime. In this section we detail the emulation environment,
our lifetime prediction framework, and the battery behavior it
models.

A. Firmware Design

The first step of our method is the design and build of the
initial firmware image. Working on compiled firmwares makes
our approach independent of the operating system and the
language used to program the application. In addition, working
on the actual firmware rather than a high-level description of
a protocol, as many other approaches do, makes it possible
to measure the effect of all implementation aspects. Our case
study on an out-of-the-box Contiki firmware (see Section IV)
shows a number of examples where seemingly unimportant
design decisions eventually shortened the network lifetime
significantly. With our firmware-based method we were able
to reveal and solve these issues.

B. Firmware Emulation

The second step of our method consists in emulating the
application firmware. In this paper, we use the T-Mote Sky as
example platform, and use MSPSim [21] to emulate sensor
nodes. We modify MSPSim to log all changes in compo-
nent state into traces files as 〈timestamp, component, state〉
tuples. In multi-node scenarios, we use the Cooja network
simulator [22], which is able to simulate a network of emulated
nodes (with MSPSim in our case). This results in a setting
where the radio medium is simulated but the nodes emulated,
running their actual firmware all the way from the application
down to the radio drivers. Assuming the application has a
periodic behavior, we run it for a given suitable duration, e.g.,
3 hours, and collect the logs before moving to the lifetime
prediction step.

In cases the sensor network is event-driven or has non-
periodic behavior, one option is to run it with some expected
workload for a long enough duration. For example, for a
system that issues alerts upon detecting presence in a room,
simulate the system for several day with a realistic event rate.

C. Lifetime Prediction

Our lifetime prediction framework [20] uses the output
traces of the emulations as its input. It plays the entire trace
a first time, and then loops over it until the end of life of
the node. In scenarios that involve a network bootstrap (e.g.,
building a routing topology), we identify from the emulation
traces a point where the network has stabilized, and have the
lifetime predictor play the bootstrap part only once, and then
loop over the rest of the trace.

The end-of-life of a node is defined as being the time until
the supply voltage of the battery is too low to supply it. This
specific voltage value is known as the “cut-off” voltage. In
the case of the T-Mote Sky for instance, the cut-off voltage
value is 2.7 Volts when the flash memory is used and 2.2 Volts
otherwise [23]. The battery and the T-Mote Sky mote models
are briefly introduced in the followings sub-sections.

MSP430 Typical Worst Average
Voltage 2.2V 3.0V 2.2V 3.0V 2.2V 3.0V

LPM3 (µA) 1.1 2.0 1.6 2.6 1.35 2.3
LPM0 (µA) 50 75 60 95 55 85

Active@3.9Mhz (mA) 1.287 1.95 1.56 2.343 1.4235 2.145

CC2420 Typical
Power Down (µA) 20.0

Idle (mA) 0.426
RX (mA) 18.8

TX@0dBm (mA) 17.4

TABLE I. TI MSP430F1611 and TI CC2420 current consumption

1) Battery Model: Our battery model is based on technical
specifications. It is different from the classical ideal battery
model because:

• Its supply voltage varies according to its residual,
the instantaneous current draw value and its internal
resistance;

• Its discharge curve varies with its residual and the
current draw value;

• It models the capacity-rate and relaxation effects.

Therefore, it is by essence, closer to the real battery behavior
than the ideal battery model (i.e., linear discharge curve and
fixed supply voltage). Note that our model does not take into
consideration temperature effects.

We model the impact of the current draw on the relative
capacity using the equivalent current draw Ieq . The latter is
defined in the following equation:

Ieq =
Cnominal

Crelative(i(t))
× i(t) (1)

where Cnominal is the nominal capacity and Crelative is the
relative capacity (according to the instantaneous current draw),
both expressed in mAh. The variable i(t) is the instantaneous
current expressed in mA. The factor between Cnominal and
Crelative is called the overdraw factor. The battery capacity-
rate effect is modeled into Crelative(i(t)) and the relaxation
effect is modeled into the overdraw factor (c.f., Sec. II-B).
The battery residual Res at time t+∆t is estimated using the
following equation:

Res(t + ∆t) = Res(t)− Ieq ×
∆t

3600
(2)

where Res(t) is the previous residual value in mAh, Ieq is the
equivalent current draw (c.f., eq.1) in mA, ∆t the time while
the Ieq current was drawn expressed in seconds. The value
3600 stands for the conversion of ∆t in hours.

2) T-Mote Sky Model: The T-Mote Sky platform is mod-
eled following the guideline of our lifetime prediction frame-
work [20]. The framework requires the components to be
modeled in both their behavior (functional model) and their
power consumption (power model). The functional model is
the trace player. The power model reproduces the electrical
characteristics of the T-Mote Sky. The T-Mote Sky embeds a
Texas Instruments MSP430F1611 micro-controller [24] and a
Texas Instruments CC2420, an IEEE 802.15.4-compliant radio
transceiver [25]. Their consumption figures are presented in Ta-
ble I. These figures are extracted from the Texas Instruments’
technical documentations [24], [25].
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Fig. 2. Network Topology in Cooja: the RPL/6LoWPAN data collection
application we use has 24 nodes connected through a 4-hop RPL topology to
the network root, node #1.

D. Iterative Design

Finally, the output of our lifetime prediction framework
provides the application designer not only with the expected
lifetime but also with:

• The current consumption profile which is the time
series of instantaneous current consumption. It makes
periodic radio and MCU activities appear clearly for
example.

• The lifetime consumption distribution which is the
contribution of every component to the overall battery
capacity consumption through the whole lifetime. It
helps discovering anomalies, e.g., components that
consume a larger portion of the battery capacity than
expected.

Based on this information, application designers can improve
their design and implementation to avoid unwanted hotspots or
may re-consider high-level application objectives. increasing
the lifetime may require to have nodes sleep for longer
periods, which in turns increases latency. In other cases, a
lifetime above the expectations makes it possible to increase
the application performance further than initially planned. In
this paper we focus on the software aspects of the design, but
in cases where the hardware is co-designed with the software,
design decisions on the hardware itself can also be made based
on the output of our lifetime prediction framework.

IV. CASE STUDY

This section presents our case study. We use the default
RPL/6LoWPAN collect example available in the Contiki OS
as scenario for experiments1. The network topology is depicted
in Fig. 2. The MAC layer is ContikiMAC, Contiki’s default

1The Contiki-2.6 release, and the examples/ipv6/rpl-collect ap-
plication.
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Std. Dev. 0.38% 0.96% 1.00% 0.062% 35.16 days

TABLE II. Consumption Profiles of the Example and Enhanced
Firmwares. Our enhanced firmware reduces the consumption of the MCU

and that of sleep mode. This results in a 3-fold improvement of the lifetime:
from 134 days to over a year.

low-power listening MAC. We set the wake-up frequency to
the default of 8 Hz, which leads to a baseline radio duty cycle,
i.e., when there is neither traffic nor radio noise, of 0.6%. The
application requirement is to be able for each node of the
network to transmit one data packet per minute to the network
border router. We use T-Mote Sky as the sensor node platform
(c.f., Sec. III-C2). We use the Duracell Plus Power MN1500
technical specification [26] to build our battery model (c.f.,
Sec. III-C1). The mote is supplied by two 1.5V batteries.
Therefore, we equip the node model with two instances of
this battery model. We set the cut-off voltage of the battery
model to 1.1 Volts each (2.2V in total) since our application
does not use the external flash memory [23].

A. Lifetime Estimation and Instant Consumption

The execution of the binary example “out of the box”
using our method reveals an average lifetime (averaged over
all nodes in the network) of 134 days. As shown in Table II
(“Example” row), the average consumption of each node of
the network can be attributed for 57.4% to sleep mode, 20.1%
to CPU, and 22.5% only for radio listening and transmission.

We now look at a single node produce an energy profile
of it. We choose node #2, one hop from the root (were the
bottleneck of the network often lies [27]). Figure 3a shows
the node’s current consumption as a function of time, in a
selected window of 0.6 seconds. This time series reveals two
sources of energy waste: (1) frequent peaks to about 2.57mA,
due to periodic CPU activity, and (2) consumption of 511µA
during sleep periods. These results highlight that the MCU is
waking up too frequently and that the battery capacity spent
in sleep mode is too high. We address both issues in order
to reach a longer lifetime, without affecting the application
performance (nodes sending to the root at 1 minute interval
with 100% end-to-end delivery ratio and average duty cycle
around 0.8%).

B. Minimizing power consumption

We address the first issue by disabling an unnecessary
software timer that was checking for serial line input at a
frequency of 64 Hz. We then were able to decrease the
frequency of Contiki’s software clock and timer engine from
128 Hz to 2 Hz; a change that did not affect the application
performance as no remaining timer in the system was set to
more than 2 Hz.

The second issue is that the radio was never turned into the
power down mode. Instead of consuming 20µA the chip was
using 426µA, which correspond to the idle mode consumption
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Fig. 3. Power Trace of the Example and Enhanced Firmwares. Note the
log scale. Our enhanced firmware suppresses a number of unnecessary CPU
wakeups (64 Hz peaks in the “Example” case) and lowers the baseline by
using the CC2420 power down mode instead of idle.

(c.f., Sect.III-C2). At the time of writing we are currently
implementing the missing features in the cc2420 driver and
ContikiMAC protocol that will make it possible to use the
power down mode during long periods of sleep. Note that such
implementation requires some changes in the ContikiMAC
timings, as waking up from power down mode requires to
stabilize the crystal oscillator again, which takes a longer time
than waking up from idle. To get an estimate of the results after
implementing these changes, we run our Lifetime Predictor
again now assuming power down instead of idle.

C. Enhanced firmware

The current consumption profile of the enhanced firmware
is shown in Figure 3b. Our improvements reduce the sleep
consumption from 511µA to 22.3µA. It is also noticeable that
there is less MCU activity (2.57mA spikes).

Table II reports the lifetime consumption distribution fig-
ures for both firmware versions. Figure 4a and Figure 4b
present the same results for every individual node using respec-
tively the example and the enhanced firmware. The fraction of
the battery capacity consumed in sleep mode is reduced from
57% (“Example” row) to below 13% (“Enhanced” row) which
is expected since node are sleeping most of the time (average
duty cycle of 0.8%, c.f., Fig. 6). The fraction of the MCU
consumption is reduced to a similar extent, by almost 4 times.
Overall, the radio is now the component responsible for most
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Fig. 4. Power consumption distribution of the Example and Enhanced
Firmwares. The enhanced firmware reduces MCU usage and reduces the
baseline cost in sleep mode. Its consumption profile is consequently dominated
by the radio.

of the battery’s capacity consumption (81.5% on the average),
which is expected in this duty cycled data collection scenario.

As a result, we increased the lifetime of the initial firmware
by more than three times, while fulfilling the application
requirements of 1 packet/minute with no significant change
in average duty cycle (c.f., Tab. II). The lifetime estimated for
each node is presented in the Figure 5.

V. RESULTS

In this section we present the results of two experiments.

The first experiment deals with lifetime estimation using a
technical specification-based battery model in comparison with
the ideal battery model and with duty cycle based estimations.
The purpose of this experiment is to showcase the impact of
the estimation methods on the estimated lifetime and provide
an understanding of the expected difference when using an
ideal battery model or the duty cycle based lifetime estimation
method.

The second experiment is a study on the impact of the
wake-up period over the lifetime of the nodes when using
our battery model or the duty cycle based estimation. This
experiment demonstrates how the lifetime predicted by our
method can differ from the duty cycle based estimation in
more or less radio-intensive scenarios. This allows designers to
better understand the relation between duty cycle and lifetime,
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Fig. 5. Lifetime Estimates for the Example and Enhanced Firmwares.
Our enhanced firmware increases lifetime dramatically for all nodes.
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Fig. 6. Per-node Duty Cycle: The distribution of the duty cycle over the
network is homogeneous, with all nodes in the range 0.75% to 1%.

helping application design where the duty cycle is the only
available metric.

We use the same setup as in the case study, and use the
“enhanced” version of the firmware (c.f., Sect. IV).

A. Duty cycle based Estimation

Before reviewing our results, we briefly introduce the duty
cycle-based lifetime estimation method we compare against.

The duty cycle over a single period DCT is computed using
the following formula:

DCT =
ton

ton + toff
=

tTX + tRX

T
(3)

Where tTX and tRX are respectively the time spent transmit-
ting and the time spent receiving or listening and T is the
length of the period, expressed in seconds. In our experiment
we consider T as being the whole observation time. In other
words, the duty cycle is observed over the complete lifetime
of the node. Its value is depicted for each node of the network
in the Figure 6. It is noticeable that the distribution of the duty
cycle is quite homogeneous over the whole network.

To estimate the lifetime of a single node using the duty
cycle, we compute the average consumption iT using the

following equation:

iT =
(tTX × iTX) + (tRX × iRX)

T
+ (1−DCT )× iPD (4)

Where iTX , iRX and iPD are the current consumed respec-
tively in TX, RX and power down mode by the RF transceiver
in mA. We then compute the duty cycle-based lifetime estimate
LT as follows:

LT =
Cnominal

iT
(5)

Where Cnominal is the nominal capacity of the battery ex-
pressed in mAh (3360mAh in our case) and iT the average
consumption over one period expressed in mA.

B. Comparison of Lifetime Estimation Methods

Figure 7 presents the lifetime predictions using our ap-
proach, the ideal battery model and the duty cycle based
estimation method. Our battery model estimates a median
lifetime of 497.94 days. The duty cycle based estimation is
the most optimistic with 877.07 days. The ideal battery model
results are intermediate, reaching 680.87 days.

We look at the difference of the ideal battery model and
the duty cycle based method prediction, relatively to our
prediction. It appears that the difference is almost constant
between our model and the ideal one (36.74% average) and
between our model and the duty cycle (76.24% average).
Regarding the duty cycle based lifetime estimate, node #5 is
slightly standing out with a relative difference of 84.8%. This
node has the highest duty cycle (close to 1%, c.f., Fig. 6),
and is also responsible for relaying packets from nodes #9,
#14, #15 and #16 to the border router #1 (c.f., Fig. 2). As a
consequence, its consumption repartition is 12.64% spent in
sleep mode, 8.37% for the MCU only and 78.99% for the
radio+MCU which means that it consumes less energy in the
radio than the rest of the network (c.f., Tab. II, “Enhanced”
row). In this case, the duty cycle based method overestimates
the lifetime slightly more that for other nodes.

C. Impact of the Wake Up Period

In this experiment, we focus on three nodes only since
the nodes’ lifetime is quite homogeneous in the network
(c.f., Tab. III). We selected node #5 which has the shortest
lifetime with 383 days, node #6 which has among the longest
lifetimes with 513 days and node #17 which has a 494 days
lifetime (closest to the median lifetime or 417 days). We vary
ContikiMAC wakeup in the range 16 Hz to 2 Hz and observe
its impact on lifetime.

Tech-based Model Ideal Model Duty Cycle
Median 497.94 days 680.87 days 877.07 days
Max. 515.11 days 704.97 days 904.68 days
Min. 383.60 days 518.91 days 708.93 days

Std. Dev. 35.16 days 49.77 days 52.97 days

TABLE III. Lifetime estimation summary

Table IV reports the duty cycles for different ContikiMAC
channel check rates (CCR) and nodes. As expected, the duty
cycle decreases with the CCR. There are a few exceptions
that we attribute to the statistical distribution, which is slightly
different from one simulation to the other. Note that the order
of the nodes is not conserved among runs for the same reason.
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Fig. 7. Comparison Between our Model, the Ideal Battery Model and Duty Cycle Based Lifetime Estimation. For all nodes, the three methods rank
similarly, with our method yielding the most conservative results. The relative difference between different methods is nearly constant accross different nodes.

Node CCR=16Hz CCR=8Hz CCR=4Hz CCR=2Hz
5 1.657 % 0.982 % 0.414 % 0.487 %
6 1.489 % 0.748 % 0.411 % 0.301 %
17 1.520 % 0.795 % 0.451 % 0.298 %

TABLE IV. Effect of CCR on Duty Cycle

Table V shows the lifetime estimates based on our approach
and on the duty cycle based estimation. We find that while the
lifetime increases when the duty cycle decreases, the relation
is not proportional.

Technical Specification Based Battery Estimation

Node CCR=16Hz CCR=8Hz CCR=4Hz CCR=2Hz
5 247.43 days 383.59 days 825.15 days 555.57 days
6 277.35 days 512.95 days 831.10 days 932.67 days
17 273.10 days 493.91 days 775.19 days 946.69 days

Duty-cycle Based Estimation

Node CCR=16Hz CCR=8Hz CCR=4Hz CCR=2Hz
5 438.16 days 708.94 days 1476.01 days 1296.32 days
6 484.21 days 901.32 days 1484.43 days 1881.45 days
17 474.87 days 855.34 days 1378.72 days 1895.89 days

TABLE V. Lifetime Estimation at Different Channel Check Rates
With both duty cycle based estimation and our model, the lifetime increases
at a lower CCR. However, the ratio between both estimates is not constant.
This is attributed to different CCR leading to different energy profiles, with

a variable contribution of the radio to the overall consumption.

Figure 8 shows a comparison of the consumption distri-
bution. The graph shows that the contribution of the radio to
the overall consumption decreases to 56% in the worst case
(node #5, CCR=2 Hz). The relative consumption of the MCU
reaches more than 20%. As a consequence, estimations based
on the duty cycle are biased explaining the difference in the
estimation results (c.f., Tab. V). This bias was outlined as well
for high duty-cycle (100% down to 25%) in an experimental
study on the network lifetime [28].

VI. DISCUSSION

The main limitation of our method is the lack of ground
truth, a limitation we share with many other efforts that
incorporate battery models. We base our model on the technical
specifications of the battery, assuming that these specifications
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Fig. 8. Power Consumption Distribution under Different ContikiMAC
Channel Check Rated (CCR) for nodes #5, #6 and #17. Less frequent
channel checks lead to a higher relative contribution of sleep mode and MCU
– adversely affecting the accuracy of duty cycle based lifetime estimation.

are close to the actual battery behavior in common settings.
The ideal battery model is known to over-estimate lifetime
by 40%-50% on the average (for the closest cases) [19]. In
our experiments, we find a similar ratio between the ideal and
our model. We are therefore confident our lifetime prediction
is close to the ground truth.

We are currently designing an experiment that will allow us
to validate the battery behavior in a shorter timespan than the
almost 500 days median lifetime of the nodes in our case study.
The experiment will enable us to address another limitation:
the fact that we consider the temperature as being constant.
The technical specifications we build our model upon hold
only for an ambient temperature of +21 C. Modeling the effect
of temperature over the whole operation range of the battery
(-20 C to +35 C) would require new series of measurements,
as a complement to the official technical specification.

Finally, even though we use firmware emulation to produce
our traces, the fact that we simulate the radio medium leads
to some inaccuracies. In real deployments, nodes experience
losses and react with retransmissions and routing topology
adaptation. There is, however, very little one can do to predict



the occurrence of events accurately under the entire lifetime of
the network. Getting closer lifetime estimates would require to
actually pre-deploy the application in its target environment,
record all component state changes as we do during emulation,
and then run our lifetime predictor on the traces. This is
impractical in most cases, as deploying may be too expansive
if possible at all in early design stages, and as logging all
state changes from software would have significant side effects
and require much storage space (our experiments produced
between 5000 and 20000 state changes per node and per
minute). In contrast, we believe our approach is very practical,
enabling low-cost iterations at early stages of the application
design.

VII. CONCLUSIONS

In this paper we introduced a method to estimate the
network lifetime using an emulated application with a non-
ideal battery model and a low-level description of the node
hardware. We implement this method and demonstrate its
applicability to several scenarios. In a case study, we increased
the initial lifetime of our application by a factor greater than
three while keeping the same performance and fulfilling the
application requirements. Moreover, we highlighted the fact
that certain design decisions that appear not to influence the
lifetime significantly from a designer perspective, do have in
fact a strong impact on it. Our experiments demonstrated the
limitations of the ideal battery model and the bias that is
introduced when the duty cycle is used to estimate lifetime.
Both methods overestimate the lifetime dramatically, in the
range of 36 to 76%.
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