
Consistency and scalability in event notification for embedded Web applications

Simon Duquennoy
LIFL, CNRS UMR 8022, Univ. Lille 1,

INRIA Lille - Nord Europe, France
simon.duquennoy@lifl.fr

Gilles Grimaud
LIFL, CNRS UMR 8022, Univ. Lille 1,

INRIA Lille - Nord Europe, France
gilles.grimaud@lifl.fr

Jean-Jacques Vandewalle
Gemalto Technology & Innovation, France

jean-jacques.vandewalle@gemalto.com

Abstract

A new way to interact with small devices consists in em-
bedding tiny Web servers, allowing the devices to serve
fully-fledged Web applications. When the device needs to
keep its users up-to-date of its internal state, the Web ap-
plication has to use an event publication solution. Several
works have recently been conducted in order to evaluate
the trade-offs of various Web-based event notification solu-
tions. In this paper, we propose to evaluate the feasibility of
event notification in embedded Web applications. We con-
duct a large set of experiments in order to compare various
push and pull based approaches for embedded systems. We
show that a push-based approach can be very efficient in
most situations, both in terms of client consistency and of
scalability.

1. Introduction

A new way to implement embedded systems software
consists in embedding Web servers in devices. Such servers
can be used in sensors, home automation or routers, mak-
ing these devices accessible from any computer, PDA or
smart phone. Furthermore, Web application development
is well-known and widespread. The global interconnection
of devices based on Web technologies is called the Web of
Things [26, 16, 15, 12].

Web technologies are based on a request/response
model. HTTP allows clients to retrieve resources from
servers, but disallows servers to push data to the clients.
However, there are many use cases where servers would
like to notify clients for event, e.g., auction Web site, stock
ticker, news portal, forums, chat-rooms, etc. Usually, such
behavior is implemented in AJAX applications by polling
the server at a given interval. A new model named Comet

[22] allows servers to push data over HTTP. Works have
been conducted in order to evaluate the best strategies for
Web-based event-notification [1, 2].

Intuitively pull-based approaches are simple to handle
on the server-side, because it is stateless. Push-based ap-
proaches are not trivial to design, and require more re-
sources on the server-side, which has to keep and manage
information about the clients listening to events. Web push
is often considered as a luxury for clients, with huge cost on
the server-side [5, 1, 3].

Many Web of Things use cases also require event-
notification: sensors, routers, and home automation systems
would like to trigger alerts or to notify some changes on
their environment or internal state. In this context, where
the server runs on a tiny device, the choice between push
and pull-based approach is very important. It has a great im-
pact on the scalability of the application, on the energy con-
sumption of the system, on its hardware requirements, and
on the reactivity and consistency obtained on the clients-
side (some applications are very critical and require excel-
lent reactivity).

We focus on the approach where each device runs a
whole HTTP/TCP/IP stack rather than on solutions where
the management of HTTP, TCP and IP are delegated to a
gateway located between the client and the targeted device.
This model is a user-centric architecture, where the embed-
ded Web servers are organized around the client. This ap-
proach has been discussed in [11]. We showed in a previous
work [12] that it is possible to serve efficiently interactive
AJAX [14] applications over TCP/IP from devices with a
CPU cadenced at a few MHz, with a few hundred of bytes
of RAM and a few kilo-bytes of EEPROM.

In this paper, we discuss and evaluate the costs of the em-
beddability of server push for embedded Web applications.
We compare push and pull based approaches in the context
of the Web of Things, in order to highlight the trade-offs of



each methodology. We base this analysis on the works of
Bozdag et al. [2]: they evaluate the pros and cons of push
and pull based event notification for usual (non embedded)
AJAX applications.

This paper is organized as follows: Section 2 presents
a state of the art of embedded Web servers and Web-based
event notification. In Section 3, we present the challenges
for embedding Comet in tiny Web servers. We conduct ex-
periments in order to find the trade-offs of push and pull
based approaches for the Web of Things in Section 4. We
finally conclude in Section 5.

2. State of the art

In this section, we present a state of the art of embedded
Web servers and Web-based event notification.

2.1. Embedded Web servers

Several works [8, 18, 21] have shown that it is possi-
ble to embed Web servers in tiny devices. Proposed so-
lutions such as iPic [24], WebIt [17] and Miniweb [10]
are stand-alone Web servers, with no underlaying operat-
ing system, but thought as the operating system itself. They
do not rely on usual general-purpose networking interfaces
like Berkeley sockets, but implement their own dedicated
TCP/IP stack. That allows to design a cross-layer architec-
ture instead of usual layered architectures, making possible
many optimizations, thus saving memory, code size and en-
ergy. Their memory footprint is around one or two hundreds
bytes of RAM and a few kilo-bytes of EEPROM.

Other works have been done on a more generic context,
focusing on TCP/IP stack support for embedded systems:
TinyTCP [4], mIP [23] and uIP [9]. It is possible to run a
Web server on such stacks, but this forbids cross-layer opti-
mizations for efficient Web contents service over TCP. The
memory footprint of this kind of TCP/IP stack is of a few
kilo-bytes of RAM and dozens of kilo-bytes of EEPROM.

As far as we know, no work has been done about the em-
beddability of push-based Web applications on tiny devices.
In fact, many previous works on embedded Web servers
mainly focus on the service of static Web pages, which are
pre-processed and statically embedded in the server at com-
pile time.

In [12], we propose new solutions for efficient embedded
Web applications support with very low memory require-
ments. We propose solutions based on off-line computa-
tions and cross-layer optimizations, where TCP is special-
ized for supporting an HTTP server. Our prototype, named
Smews, is publicly available1 and has been ported to various

1Smews source code available at: http://smews.gforge.
inria.fr/

targets such as sensors and smart cards. It is able to serve ef-
ficiently fully-fledged Web applications made of static and
dynamic contents, including push-based notification.

2.2. Web based event notification

HTTP was initially designed for retrieving resources on
the Internet, so it is based on a simple request/response
model. Today, Web servers manage dynamic applications,
and sometimes need to keep their clients up-to date, in ade-
quacy with the server state.

The simpler approach for keeping clients up-to date in
a Web context consists in polling the server with an empir-
ically chosen time interval. That can be done in dynamic
AJAX [14] Web applications. Small intervals improve the
client-side coherence while big intervals improve scalability
by saving network and server resources. A common solu-
tion for this problem is based on an adaptive Time To Re-
fresh (TTR) [25, 5], trying to calculate a polling interval that
fits with event publications. This approach is only efficient
when the event publication tends to be constant.

Netscape introduced in 1996 a solution for pushing data
from Web servers [20], based on HTTP streaming. A long-
lived HTTP connection (initiated by the client) was used in
order to send a streamed content. When a client notification
is needed, a new part of the content is sent by the server, and
the connection remains open. The browser has to be still
waiting for the end of the HTTP response, which possibly
never occurs. It receives notifications by chunks.

The usage of this solution in AJAX Web applications is
known under the name of Comet [22]. A protocol draft
(based on JSON and on a publish/subscribe model) named
Bayeux [7] has been proposed for Comet support. The
Cometd project [6] provides Bayeux implementations for
various Web servers, such as Jetty [19]. Google’s DWR [13]
also provides a Comet support, without relying on Bayeux.

Bozdag et al. propose a study of push and pull ap-
proaches for AJAX applications [1, 2]. They provide key
metrics for performance analysis of Web-based event no-
tification. They also conducted a large set of experiments
in order to compare existing approaches (push vs. pull)
and implementations (Cometd vs. DWR). The conclusion
of this work is that Comet provides great reactivity, client
coherence and low traffic overheads, while polling provides
a better scalability in term of server-side CPU usage.

Both push and pull-based solutions have their own ad-
vantages. That is why some works [5, 3] propose adaptive
solutions where the choice between push or pull is done at
runtime, depending on the current server congestion and on
the client requirements.



3. On Comet for embedded Web servers

In this section, we describe the challenges of Comet sup-
port on embedded Web servers.

3.1. Why supporting Comet?

Embedded devices such as sensors or home automation
systems may offer various services, such requiring various
interaction models with the client accessing them. We pro-
pose a classification of the different interactions schemes
that can be needed by such systems:

On-demand information exchange: the client needs to
send/receive data to/from the device (e.g., get-
ting/sending applicative information, driving or man-
aging the device).

Event triggering: the server needs to notify the client
that something happened (e.g., the environment has
changed, a precessing has ended).

Data sampling: the client needs to collect continuously
data from the device (e.g., monitoring of the environ-
ment).

Since the Web of Things aims at designing embedded
software using the Web applicative model, it has to provide
solutions for handling each of these interaction schemes.
The original REST model of HTTP (based on a request-
response scheme) is well suited for on-demand information
exchange (using GET/POST to retrieve/send data).

For supporting triggering or sampling, the device needs
to push information to the client, which cannot be be done
with the REST model in Web applications. That is why the
support of Comet (i.e., server push in Web applications) is
a key point in the design of the future Web of Things.

3.2. Long polling vs. streaming

In a general context, event-notification can be imple-
mented easily by opening a connection from the server to
the client, sending a data and closing the connection. In a
Web context, a server can not establish a connection to the
client, because (i) if the client is in a local network and uses
address translation (NAT), it is not publicly visible and (ii)
the request/response model of HTTP is always used in Web
applications.

Comet implementations mainly propose two ways to no-
tify clients on a Web context: long polling and streaming.

Long polling Each time a client needs to register to an
event, it sends an HTTP request to the server. The server
idles, sends the HTTP response when needed. The client
connects again if it needs a new notification;

Client Server

waiting for event

request

notification

waiting for event

request

notification

waiting for event

request

notification

(a) Long polling approach

Client Server

waiting for event

request

notification

waiting for event

notification

waiting for event

notification

(b) Streaming approach

Figure 1. Comparison of long polling and
streaming

Streaming When a client needs to listen for an event, it
sends an HTTP request to the server. When event occurs,
the server sends notifications in a chunk-encoded HTTP re-
sponse, without ending it. The client is still listening. Next
notification will be the following of this potentially never-
ending HTTP response.

Figure 1 shows the behavior of long polling and stream-
ing approaches when notifying a client several times. With
long polling, a single notification is involved per client re-
quest, while in streaming, the client receives multiples no-
tifications per request. When the client needs to be notified
multiples times, streaming generates a lighter traffic.

The Bayeux protocol provides a support for both long
polling and streaming, but Cometd, the most common im-
plementation, only provides a support for long polling.
Google’s DWR supports both approaches.

3.3. Server-side support of Comet

On usual Web servers, Comet is considered as heavy be-
cause it requires to manage many clients simultaneously,
compared to pull-based approaches where connections are
idle as soon as requests have been served.

Usual Web application containers associate server-side
code to URLs (in Java for Servlets containers), and call this
code for each incoming HTTP request.

Most Web servers (e.g., Apache, IIS, . . . ) allocate one
thread/process per connected client, because they need one
socket per connection, and because sockets are the most of-
ten managed via blocking routines. URLs handlers (e.g.,
Servlets) have to generate an output and to return. In Comet,
this code has to enter a passive wait for an undetermined du-
ration. As a consequence, for each client, a server based on
this approach has an idle thread and TCP connection, thus



wasting a lot of resources on the server.
New frameworks such as Cometd and DWR have been

designed including a native support for Comet. Instead of
using one blocking thread/process per client sockets, they
use a common blocking routine that allows to listen on mul-
tiple sockets (based on the select POSIX system call). They
provide special routines to URLs handlers (e.g., Servlets)
allowing them to wait for events without idling a thread (as
an example, Jetty uses continuations). When an event oc-
curs, all URLs handlers listening for it are awaken and their
associated clients receive the notification. With such strat-
egy, no more resource is wasted for threads.

3.4. Breaking sockets, saving memory

Web servers for tiny embedded systems can work with
no underlaying operating system. They use their own dedi-
cated TCP implementation instead of usual Berkeley sock-
ets. The most often, they are event-driven systems (they
schedule their task with no thread). At a given time, only
one packet is managed, either in input or in output.

In Smews, the structure used to store connections con-
tains information about IP, TCP and HTTP. Smews is event
driven and uses of only a few global buffers, shared by
all the connections. Each connection only require almost
30 bytes of RAM. This allows to handle easily a large num-
ber of clients even in very constrained hardware.

Intuitively, event-driven architectures fit well with event
notification. Instead of managing threads waiting for events,
a simple event pool is used. This point makes possible
Comet support in tiny Web servers. In Smews, when an
event is generated in order to notify a set of clients, the
HTTP response is built only once. It is placed in a buffer
that will be used to send the notification to every listen-
ing clients in separate TCP segments (multi-cast is not sup-
ported by standard TCP). In usual OS architectures, the data
is generated once per client and replicated on each socket.

4. Life size experiments

In this section, we put to the test various Web-based
event notification methods on an embedded Web server.

4.1. Goals of the experiments

The objective of the experiments is to know the trade-
offs of various Comet and polling implementation for em-
bedded Web applications. One of our aims is to know if the
results of Bozdag et al. work [2] can be applied to tiny Web
servers. We also evaluate the usability of push-based ap-
proach in embedded devices. The steps for achieving these
goals are:

1. identifying the parameters of the various experiments,
in order to benchmark different approaches on various
context;

2. identifying relevant metrics in order to evaluate the
trade-offs of each solution;

3. creating a Web application and implementing it for all
push and pull-based approaches;

4. simulating clients connections in order to run the ex-
periments;

5. analyzing the results of the experiments.

4.2. Experiments description

We describe here the environment of the experiments
we conducted in order to compare various notification ap-
proaches in the context of the Web of Things.

4.2.1 Settings

We start from Bozdag et al. work, which describes a pro-
tocol for evaluating event-notification solutions. So use the
same variables for the settings of our experiments.

Number of concurrent users This variable allows to
evaluate the scalability of each approach. Even in the con-
text of Web of Things, scalability may be required: several
clients may be each listening on several events of a same
device. Because of embedded devices constraints and ap-
plicative needs, we choose lower interval than Bozdag et al.:
[1;256], instead of [100;10000].

Publish interval This is the frequency of event pub-
lication by the server. We used the same values than
Bozdag et al.: 1, 5, 15, 30 and 50 seconds. We added a
sixth configuration based on a random choice between 1 and
50 seconds, making the publication no more regular.

Pull interval When a pull approach is used, we used var-
ious intervals. We use the same values than Bozdag et al.:
1, 5, 15, 30 and 50 seconds. It may be interesting to try
a strategy based on adaptive TTR, but since we measure
asymptotic performance, it will provide the same result as a
static interval equals to the publication interval.

Application mode For this variable, Bozdag et al. used
three modes: polling, Cometd, DWR. Since Cometd and
DWR can not be executed in tiny devices with no oper-
ating systems, we use our own Comet implementations.
Our three modes are: polling, long polling, and streaming.
Bozdag et al. did not use any streaming implementation.



1 16 64 128 256
0

0.5

1

1.5

2

2.5

seconds

clients 1 16 64 128 256
0

5

10

15

20
seconds

clients
(a) Publish interval: 5 seconds (b) Publish interval: varying

Long Polling Streaming Pull 1s Pull 5s Pull 15s Pull 30s Pull 50s

Figure 2. Mean Publish Trip time for a publish interval of 5s (a) or varying between 1 and 50s (b)

4.2.2 Experiments configuration

We designed Web applications with event notification for
the experiments. They are executed by our embedded Web
server prototype, Smews (this is the only available embed-
ded Web server that supports Comet). The device we choose
for our experiments is a sensor named WSN430, with the
following hardware configuration: 16 bits MSP430 CPU at
8 MHz, 10 kB of RAM, 48 kB of EEPROM and a serial line
at 14400 B/s as communication interface. With its smallest
configuration, Smews only requires 200 bytes of RAM and
8 kB of EEPROM.

The sample application is very simple: the server gets
a new value at a given interval. Each time, it notifies ev-
ery listening clients. The application supports polling, long
polling and streaming. During an experiment, a given num-
ber of clients connect to the server in order to receive noti-
fications. All the clients use the same notification method.

The four variables described in Section 4.2.1 can be com-
bined in 210 experiment settings. Each experiment has a
duration between 5 and 10 minutes, and has been run 10
times. The results presented here are the mean of these 10
iterations, after the removal of the 2 lower and higher sam-
pled values.

We used a script written in Python in order simulate the
clients, allowing to run the experiments in the various set-
tings described in Section 4.2.1. All the clients are simu-
lated on the same machine and access the sensor using the
same serial line.

The experiments we conduce aim at being as general as
possible. The usage of a serial line, which is full-duplex
and collision-free, allows the experiments to be independent
from specific physical layer properties. In future works, we
plan to analyze the impact of lossy links such as ZigBee,
Wifi, or other shared lines.

4.3. Experimental results

In order to evaluate the trade-offs of each approach,
we identified a set of relevant metrics and extracted them
from our experiments. These metrics are inspired from
Bozdag et al. works. In the following sections, we present
and synthesize our benchmarks results (only a relevant sub-
set of all the experiments conduced are shown).

4.3.1 Mean Publish Trip time (MPT)

The publish trip-time is the time elapsed between the cre-
ation of a data by the server and its reception by the client.
It shows how long it takes for the client to be updated when
an event occurs. In their study, Bozdag et al. showed that
push-based approaches provide a lower Trip Time, so a bet-
ter consistency.

Figure 2 shows the MPT we measured from our exper-
iments, with a publication interval of 5 seconds or varying
between 1 and 50 seconds.

With a few clients (less than 64), both streaming and
long polling provide excellent trip times in comparison with
polling. This is because with Comet, the server pushes data
to all the clients as soon as an event occurs.

Long polling generates more traffic than streaming be-
cause it forces the client to send a HTTP request (around
600 bytes) between each notification (see Section 3.2). With
more than 64 clients, long polling does not provide a signif-
icantly shorter trip time than polling, because clients regis-
trations saturate the traffic.

Streaming provides the shortest trip times, because it
generates a lightweight traffic. With a growing number of
clients, it makes a gap with both long polling and polling ap-
proaches. Streaming approach provides low trip time with



1 16 64 128 256
0

20

40

60

80

100

percent

clients 1 16 64 128 256
0

1,000

2,000

3,000

4,000

5,000

percent

clients

100

(a) Publish interval: 1 second (b) Publish interval: 50 seconds
Long Polling Streaming Pull 1s Pull 5s Pull 15s Pull 30s Pull 50s

Figure 3. Received Publish Messages for a publish interval of 1s (a) or 50s (b)

no scalability issue.
With a publish interval of 5 seconds, the traffic is sat-

urated in most configurations. Logically, in such case, the
mean trip time is almost half the publication interval. In this
context and with 256 clients, the streaming approach allows
to reach a mean trip time of only 1 second.

4.3.2 Server Performance (SP)

The server performance shows the CPU usage of the server
software. In Bozdag et al. experiments, it was used as
the indicator of the server charge. The authors concluded
that SP grows faster with Comet solutions, possibly causing
scalability issues. In our experimental configuration, the
performance bottleneck is the network capacity rather than
the CPU, so we did not measure SP in our experiments.

4.3.3 Received Publish Messages (RPM)

The RPM is the mean amount of messages received by
the clients. When presented as a percent of the published
events, it shows the possible traffic overhead.

Figure 3 shows the RPM for a publish interval of 1 sec-
ond and of 50 seconds. With Comet (long polling as well
as streaming), the RPM never exceeds 100% because each
published data is received only once by the clients.

With polling, the lower is the polling interval, the higher
is the RPM. With 16 or less clients, a polling interval of
1 second and a publication interval of 50 seconds, 5000% of
the publications are received; in other words, 98% percent
of requests were unnecessary. We also notice that when us-
ing polling with a high rate, the RPM decreases with higher
number of clients. This occurs when the serial line of the
sensor is saturated with the traffic.

4.3.4 Received Unique Publish Messages (RUPM)

The RUPM is the mean amount of unique publications re-
ceived by clients. It is given as a percent of the published
events, and shows if clients miss any items.

Figure 4 shows the RUPM for a publish interval of 1 sec-
ond or of 30 seconds. It shows that with a too big polling in-
terval, the clients may miss many notifications. With many
clients, the network bandwidth is saturated, also involving
misses. The long polling approach provides a RUPM that
is comparable (in fact, a bit worse) to the polling approach
with an interval equals to the publication rate. This is be-
cause long polling requires one HTTP requests per notifica-
tion, as well as polling.

With the streaming method, misses are quite rare. The
RUPM is close to 100% even with 128 clients for a pub-
lication interval of 1 second. The only situation in which
we obtained a RUPM significantly lower than 100% with
streaming was with a publication interval of 1 second and
more than 128 clients.

Logically, with slow publication rate, clients misses be-
come more rare.

4.3.5 Received Message Percentage (RMP)

This variable was used by Bozdag et al. to have an indicator
on packet losses. In our configuration, the network bottle-
neck was the serial line of the sensor, where losses never
occur, so we did not measure the RMP.

4.3.6 Network Traffic in Packets (NTP)

The NTP allows to evaluate the network usage of a strategy.
Figure 5 shows the NTP for a publish interval of 1 second

or varying between 1 and 50 seconds. For polling and long



1 16 64 128 256
0

20

40

60

80

100

percent

clients 1 16 64 128 256
0

20

40

60

80

100

percent

clients
(a) Publish interval: 1 second (b) Publish interval: 30 seconds

Long Polling Streaming Pull 1s Pull 5s Pull 15s Pull 30s Pull 50s

Figure 4. Received Unique Publish Messages for a publish interval of 1s (a) or 30s (b)

1 16 64 128 256
0

50

100

150

200

250

packets per second

clients 1 16 64 128 256
0

20

40

60
packets per second

clients
(a) Publish interval: 1 second (b) Publish interval: varying

Long Polling Streaming Pull 1s Pull 5s Pull 15s Pull 30s Pull 50s

Figure 5. Network Traffic in Packets for a publish interval of 1s (a) or varying between 1 and 50s (b)

polling approaches, the network comes to saturation from
almost 50 packets per second. This highlights the situations
where the bottleneck is the traffic (with many clients and/or
short polling intervals).

With streaming, NTP grows up to 250 packets/second
with a publication every second and 128 or more clients.
This is because with streaming, the traffic is made of a lot
of small TCP segments, allowing to send more packets with
the same bandwidth limitations. In fact, this point helps the
streaming approach in providing good performances.

4.3.7 Network Traffic in bytes (NTB)

This metric was not used by Bozdag et al., but our analysis
of the NTP shows that it is not the best way to synthesize
network congestions. That is why we also evaluate the net-

work traffic in bytes per seconds.
Figure 5 shows the NTP for a publish interval of 1 sec-

ond or varying between 1 and 50 seconds. It provides a
precise overview of the network usage. It shows that long
polling generates a heavy traffic; this is because it involves
requests between each publication. With a large polling in-
terval, polling allows a very low network usage (but pro-
vides less data coherence).

Streaming provides a lower traffic usage than long
polling or polling with a short interval.

4.3.8 Mean Coherent Time (MCT)

Finally, we introduce a new metric in order to evaluate the
client-side data coherence. Bozdag et al. made use of the
MPT to evaluate it, but this metric is perfectible because it



1 16 64 128 256
0

5

10

kilo-bytes per second

clients 1 16 64 128 256
0

5

10

kilo-bytes per second

clients
(a) Publish interval: 1 second (b) Publish interval: varying

Long Polling Streaming Pull 1s Pull 5s Pull 15s Pull 30s Pull 50s

Figure 6. Network Traffic in bytes for a publish interval of 1s (a) or varying between 1 and 50s (b)

1 16 64 128 256
0

20

40

60

80

100

percent

clients 1 16 64 128 256
0

20

40

60

80

100

percent

clients
(a) Publish interval: 1 second (b) Publish interval: 50 seconds

Long Polling Streaming Pull 1s Pull 5s Pull 15s Pull 30s Pull 50s

Figure 7. Mean Coherent Time for a publish interval of 1s (a) and 50s (b)

does not take into account client misses. A low trip time
can be obtained even with many misses. MCT represents
the amount of time spent by the clients with up-to-date data.
It provides a synthesis of all the metrics.

Figure 7(a) and 7(b) show the MCT for a publication
interval of respectively 1 and 50 seconds.

With a publication interval of 1 second, streaming makes
a gap with long polling and polling with any frequency.
With 128 clients, it reaches 50%, compared to results be-
tween 1% and 7% for polling and long polling.

With a publication interval of 50 seconds, MCT values
are higher than with an interval of 1 second. Note that when
polling exactly at the publication interval and when no con-
gestion occur, the mean coherent time is of 50%. This is
due to the lack of synchronization between the server and
the clients. Some clients send their requests and retrieve a

data that has just been published by the server, while other
clients get their notifications a few seconds before their ex-
piration.

4.4. Results analysis

We propose a summary of the results we presented in
Section 4.3. We highlight the trade-offs of various event
notification approaches in various contexts.

4.4.1 Impact of the network

The network capacity plays an important role in the quality
of Web-based notification. In our experiments, the server
is accessed via a serial line at 14400 B/s. Such a small
throughput is common in embedded devices network links,



which networking hardware often has no DMA and is un-
able to manage packets queues. With such simple hardware,
which is very different from computer network interfaces,
the network capacity is limited by the CPU speed.

The most efficient strategy in term of traffic usage is
polling with big interval. In fact, with polling, the traf-
fic generated by each client is very predictable and easy to
control. The polling interval can be chosen depending on
the number of clients and the network capacity. This is the
main advantage of polling approaches.

The traffic generated by Comet approaches is not de-
pending on a client interval but on the server publication
interval. Long polling is sensibly heavier than streaming in
practice, because it produces a lot of HTTP requests, which
are of typically around 600 bytes, while notifications often
contain only a few bytes of payload. Streaming produces
mainly very small packets, involving low bandwidth usage.

4.4.2 Data coherence

In their paper [2], Bozdag et al. showed that Comet pro-
vides the best coherence. They only used solutions based on
long polling, because streaming is still rarely implemented.
In the context of embedded Web servers, our results show
that long polling does not provide a great data coherence.
The MCT obtained with long polling or with polling at the
right interval are similar. Long polling allows to reach low
trip time, but it involves traffic overhead when compared to
polling, because of the cost of client registrations.

By implementing a support for HTTP streaming in our
prototype, we were able to compare streaming to long
polling and to polling. Our results show that streaming
makes a gap with other solutions for all of our 210 bench-
mark settings. This is because it generates a small amount
of requests, uses small packets and is very easy to manage
on the server-side since it makes incoming requests very
rare. Once the clients are registered, they are served very
efficiently. This approach is also the most scalable.

4.4.3 Summary

We showed that Web servers embedded in very constrained
devices are able to run Comet Web applications. Further-
more, thanks to very small dedicated connections, they are
able to handle a large number clients when compared to the
amount of volatile memory available.

Bozdag et al. obtained excellent performances with long
polling in the context of powerful Web servers in [2]. We
show that these results can not be applied directly on con-
strained Web servers, because tiny devices suffer of their
slow network interfaces.

By proposing a streaming support in our prototype, we
showed that Comet is a great solution for event notification

in embedded Web applications. In fact, the streaming ap-
proach provides the best results in term of publish trip time,
received events, non-redundancy of messages, data coher-
ence and scalability.

In practice, long polling is never better than streaming,
but is still interesting is some cases where a client needs to
be notified only once of an event.

Polling may be interesting for event-notification only
when a great number of clients are needed without requir-
ing a high data coherence: by using a very large interval, the
traffic required per client can decrease to very low values.

We identified in Section 3.1 three interactions schemes
for Web applications. We summarize here how each of them
should be handled in a Web of Things context:

On-demand information exchange: this is the basic
scheme for Web interactions, for which Comet is not
needed. Usual request-response interactions (like with
polling) are well suited for it.

Event triggering: event triggering should be implemented
with long polling, because this allows a client to listen
only once for an event.

Data sampling: data sampling should be implemented
with streaming, since this is the most efficient ap-
proach for continuous samples retrieval by a client, as
shown by our experiments.

5. Conclusions and perspectives

The support of Comet in embedded devices is a key point
in the design of the future Web of Things.

Server push solutions are known as reactive but not scal-
able. Bozdag et al. showed [2] that push-based approaches
in Web applications are efficient in terms of reactivity, con-
sistency and traffic. The only benefit of polling is the server-
side resources usages, allowing a better scalability.

Based on this work, we conducted similar experiments in
the context of the Web of Things. We first showed that by
using an fully integrated Web server (with its own commu-
nication stack, with no OS), Comet can be supported in very
constrained devices (256 simultaneous clients supported in
only 10 kB of RAM).

The results of our benchmarks showed that Comet pro-
vides heterogeneous performances depending on the way it
is implemented. Streaming makes a gap in term of perfor-
mance with both polling and long polling approaches. As
a big difference with Bozdag et al. results, streaming pro-
vides the best scalability.

The event-driven model used by embedded Web servers,
coupled with their dedicated TCP/IP stack, allows to sup-
port efficiently event-notification. In such model, the whole
system is event-driven, making push approaches easier to



support. In fact, the well-known scalability issues of push-
based approaches seem to be due to traditional OS con-
straints, which break the native event-driven model of the
hardware.

In future works, we plan extend the scope of this study
to contexts with link losses and collisions. We also would
like to analyze the energy consumption of the devices when
notifying events in order to study duty cycle management.

References

[1] E. Bozdag, A. Mesbah, and A. van Deursen. A comparison
of push and pull techniques for ajax. In Proceedings of the
9th IEEE International Symposium on Web Site Evolution
(WSE), pages 15–22. IEEE Computer Society, 2007.

[2] E. Bozdag, A. Mesbah, and A. van Deursen. Performance
testing of data delivery techniques for ajax applications.
Journal of Web Engineering (JWE), 2009. To appear.

[3] E. Bozdag and A. van Deursen. An adaptive push/pull algo-
rithm for ajax applications. In Third International Workshop
on Adaptation and Evolution in Web Systems Engineering
(AEWSE’08), pages 95–100, July 2008.

[4] G. H. Cooper. Tinytcp, 2002. http://www.csonline.
net/bpaddock/tinytcp/.

[5] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham,
and P. Shenoy. Adaptive push-pull: disseminating dynamic
web data. In WWW ’01: Proceedings of the 10th interna-
tional conference on World Wide Web, pages 265–274, New
York, NY, USA, 2001. ACM.

[6] Dojo. Cometd the scalable comet framework, 2008. http:
//cometd.com/.

[7] Dojo. Dojo fundation bayeux protocol, 2008.
http://svn.xantus.org/shortbus/trunk/
bayeux/bayeux.html.

[8] M. Domingues. A simple architecture for embedded web
servers. ICCA’03, 2003.

[9] A. Dunkels. Full tcp/ip for 8-bit architectures. In MobiSys
’03: Proceedings of the 1st international conference on Mo-
bile systems, applications and services, pages 85–98, New
York, NY, USA, 2003. ACM Press.

[10] A. Dunkels. The proof-of-concept miniweb tcp/ip stack,
2005. http://www.sics.se/˜adam/miniweb/.

[11] S. Duquennoy, G. Grimaud, and J.-J. Vandewalle. Smews:
Smart and mobile embedded web server. In 3rd Interna-
tional Workshop on Intelligent, Mobile and Internet Ser-
vices in Ubiquitous Computing (IMIS’09), Fukuoka, Japan,
March 2009.

[12] S. Duquennoy, G. Grimaud, and J.-J. Vandewalle. The
web of things: interconnecting devices with high usability
and performance. In 6th International Conference on Em-
bedded Software and Systems (ICESS’09), HangZhou, Zhe-
jiang, China, May 2009.

[13] DWR. Direct web remoting, 2007. http://
directwebremoting.org/dwr/reverse-ajax.

[14] J. J. Garrett. Ajax: A new approach to web applications.
Adaptivepath, 2005.

[15] D. Guinard and V. Trifa. Towards the web of things: Web
mashups for embedded devices. In Workshop on Mashups,
Enterprise Mashups and Lightweight Composition on the
Web (MEM 2009), in proceedings of WWW (International
World Wide Web Conferences), Madrid, Spain, Apr. 2009.

[16] D. Guinard, V. Trifa, T. Pham, and O. Liechti. Towards phys-
ical mashups in the web of things. In Proceedings of INSS
2009 (IEEE Sixth International Conference on Networked
Sensing Systems), Pittsburgh, USA, June 2009.

[17] G.-j. Han, H. Zhao, J.-d. Wang, T. Lin, and J.-y. Wang.
Webit: a minimum and efficient internet server for non-pc
devices. In Global Telecommunications Conference, 2003.
GLOBECOM ’03. IEEE, volume 5, pages 2928–2931 vol.5,
2003.

[18] T. Lin, H. Zhao, J. Wang, G. Han, and J. Wang. An embed-
ded web server for equipments. ispan, 00:345, 2004.

[19] Mortbay. Jetty web server, 2007. http://jetty.
mortbay.org/.

[20] Netscape. An exploration of dynamic documents, 1996.
[21] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao.

Tiny web services: design and implementation of interop-
erable and evolvable sensor networks. In T. F. Abdelzaher,
M. Martonosi, and A. Wolisz, editors, SenSys, pages 253–
266. ACM, 2008.

[22] A. Russell. Comet: Low latency data for the browser. Dojo
Toolkit, 2006.

[23] S. Shon. Protocol implementations for web based control
systems. International Journal of Control, Automation, and
Systems, 3:122–129, March 2005.

[24] H. Shrikumar. Ipic - a match head sized webserver., 2002.
[25] R. Srinivasan, C. Liang, and K. Ramamritham. Maintaining

temporal coherency of virtual data warehouses. Real-Time
Systems Symposium, 1998. Proceedings., The 19th IEEE,
pages 60–70, Dec 1998.

[26] V. Stirbu. Towards a restful plug and play experience in the
web of things. In ICSC ’08: Proceedings of the 2008 IEEE
International Conference on Semantic Computing, pages
512–517, Washington, DC, USA, 2008. IEEE Computer So-
ciety.


