
Smews: Smart and Mobile Embedded Web Server
Simon Duquennoy

IRCICA/LIFL, CNRS UMR 8022,
INRIA Lille - Nord Europe,

Univ. Lille 1, France
simon.duquennoy@lifl.fr

Gilles Grimaud
IRCICA/LIFL, CNRS UMR 8022,

INRIA Lille - Nord Europe,
Univ. Lille 1, France
gilles.grimaud@lifl.fr

Jean-Jacques Vandewalle
Gemalto Technology & Innovations,

France
jean-jacques.vandewalle@gemalto.com

Abstract—In this paper, we show that Web protocols and
technologies are good candidates to design the Internet of Things,
through a user-centric architecture (the user simply has to use a
standard Web browser). We detail how this Web of Things can
handle typical embedded devices interaction needs. We discuss
the technical feasibility of embedded Web servers, and, thanks
to an analysis of the Web protocols, we propose new cross-
layer solutions for efficient tiny embedded Web servers design.
The problem of event notification for Web applications is also
discussed. We finally present a prototype – named Smews – as
a proof of concept of the Web of Things. Smews implements our
proposals and has been embedded in tiny devices (smart cards,
sensors and other embedded devices), with a requirement of only
200 bytes of volatile memory and 7 kilo-bytes of code. We show
that it is significantly faster than other state of the art solutions.
We made Smews source code publically available under an open-
source license.

I. INTRODUCTION

Today, more and more devices are ubiquitously running
around us. Traditional communication schemes use of hetero-
geneous protocols, softwares and user interfaces, making hard
devices interaction. Users would like to easily access public
devices, whatever their implementation choices.

Numerous publications call this global devices interconnec-
tion the Internet of Things (IoT). This does not refer to any
technology nor any network structure, but only to the idea of
interconnecting objects as well as we interconnect computers
with the Internet. IoT relates to heterogeneous objects, such as
home automation, household electrical appliance,smart cards,
sensors, routers, . . . The complexity of such devices and the
fullness of the services they provide is exponentially growing,
making the IoT a hot research topic.

The first well-known standard for global devices interaction
is the Universal Plug and Play (UPnP) [1]. UPnP is used
for several services such as discovery, description, control,
event notification, presentation, audio and video broadcast.
Nevertheless, UPnP has several drawbacks (described more
precisely in Section II-B), it does not provide any authenti-
cation mechanisms, and claims a totally flat network usage.
In numerous papers [2], [3], we can read that UPnP is too
heavy to be embedded in some devices, because it uses a huge
number of different protocols.

We claim that IoT makes only sense using a user-centric
architecture, where actions done by devices are always initi-
ated by a user. A user can access its own set of devices, so
forming a Personal Area Network (PAN).

In this paper, we propose solutions for IoT design. In
Section II, we present a state of the art of existing protocols
and solutions for IoT implementation. We propose a new user-
centric architecture named WoT in Section III, and detail
WoT design in Section IV. The Web of Things feasibility is
discussed in Section V. In Section VI, we describe a proof-of-
concept prototype for WoT implementation. We compare its
performances with other state of the art solutions. We finally
conclude in Section VII.

II. STATE OF THE ART

In this section we define the IoT and we describe existing
standards for IoT protocols.

A. Internet of Things definition

Numerous works have been done to define the Internet of
Things and to associate technologies and network architectures
to this – still abstract – concept. The exponentially growing
amount of devices around us require efficient interaction
solutions, to allow anyone to access easily any object. The
notion of Personal Area Network (PAN) is often used referring
to IoT networks. A PAN is a volatile network that includes
every object a pearson should interact with. The main concerns
of PANs for the IoT are defined in [4], [5]. They can be
summarized as follows:

• A PAN is a volatile and spatially local network, which
includes the devices a user can physically access

• Objects discovery and addressing must handled by the
PAN protocols

• Devices must be able to interact with the whole PAN and
possibly with external networks

• Operations and interactions done into a PAN must be
secured

It must be noticed that the nodes of the PAN are mainly
hardware constrained devices. They often have a few kilo-
bytes of volatile and persistent memory, a CPU frequency of
a few MHz, hard autonomy constraints, and low-throughput
physical links (e.g., Bluetooth, USB, ZigBee, . . .).

B. UPnP: the widespread standard for PANs

UPnP [1] is a set of protocols promulgated by the UPnP
forum. It is today the most spread solution for PAN imple-
mentation. UPnP makes use of a lot of (standardized or not)
protocols and technologies, such as UDP, TCP, HTTP, HTTPU,

SOAP, WSDL, A UPnP network is flat, i.e., every objects
included into a PAN have the same role and rights.

UPnP has nevertheless several drawbacks. First, no authenti-
cation protocol is proposed for UPnP. This is a critical security
issue, allowing any device to configure any other node of the
PAN, without any user control. Secondly, UPnP makes use
of some unstandardized protocols likes HTTPU (HTTP over
UDP). Finally, UPnP is quite heavy because it uses a lot of
protocols that involves heavy processing (SOAP, WSDL, . . .).
This makes it unusable into very constrained hardware. In
[3], a proxy is proposed between the PAN and sensor nodes,
because sensors are unable to embed the whole UPnP stack.
[2] proposes a solution, where sensors workload is deported
to dedicated terminals, used as UPnP proxies.

C. Alternatives to UPnP

The JXTA technology [6] is a solution for peer-to-peer
applications design, allowing to interconnect heterogeneous
devices into a same network. JXTA-C [7] is a C implemen-
tation of JXTA, making it usable into contrained hardwares.
Nevertheless, JXTA are not built on standardized protocols.

DPWS (Devices Profile for Web Services) is the official
successor for UPnP. Its main objective is to allow secured
Web services usage. The set of protocols it uses is similar to
UPnP one, making it also hard to embed into tiny devices.

It is shown in [8] that an intersting solution for global de-
vices interconnection consists in using embedded Web severs
(EWS). [9], [10] show that devices with a few kB of RAM
and of EEPROM are able to handle an embedded Web server.

III. WEB OF THINGS: A USER-CENTRIC ARCHITECTURE

Fundamentally, the notion of PAN is user-centric, i.e., it is
built around a user. It only makes sense relatively to a user.
That is why we propose to design a IoT solution in the context
of user-centric networks.

A. Web of Things description

After years of hindsight, we observe that the success of
the Internet is due to very simple applications usage: mainly
the Web and e-mails. Nowadays, Web technologies are im-
pressively widespread, as well as anyone is able to access
Web servers from a personal computer, PDA or cell phone.
Furthermore, it has been shown (see Section II-C) that it is
technically possible to embed Web servers into tiny devices.
We call Web of Things (WoT) the concept of implementing
PANs thanks to Web servers installed into every nodes.

The WoT consists in using Web protocols and technologies
into a client-centric PAN architecture. The computer, PDA or
cell phone of the user run a client (a standard Web browser)
while every node into the PAN run a Web server. The client
is able to access any server included into its PAN. An object
can possibly be accessed by multiple users: in such situation,
it is included into several PANs.

This approach of WoT has a big advantage on UPnP: the
user is the only possible initiator of actions into its PAN. This
forbids an object to initiate an action with an other object, or
with external networks.

B. From the World Wide Web to the Web of Things

One of the obvious advantage of the WoT is that it uses
existing and widespread technologies: TCP/IP, HTTP, Web
applications. This ensures a great accessibility as well as
ease of development, via numerous existing and well-know
design frameworks. Several fundamental differences between
the World Wide Web and the Web of Things are nevertheless
very sensible.

In the WWW, servers use very powerfull hardware, they
are able to handle thousand of simultaneous connections and
HTTP requests, involving heavy server-side processing such as
pages generation. In the WoT, Web servers have huge hardware
constraints. Comparatively the client is extremely powerfull
(even if it is a PDA or a cell phone). The usage of Web
technologies like AJAX or Comet (more precisely described
in Section IV) are well-designed to deport Web application
processing from the Web server to the Web browser.

The second difference between the WWW and the WoT is
the network structure: the WWW is server-centric while the
WoT is user-centric. Web servers on the WWW are accessible
from every client, and WWW applications often focus on
the management of a set of users. On the WoT, a server is
accessible by a user only if it is into its PAN. The network
structure of the WWW is quite static, while the WoT network
structure is volatile.

IV. DESIGNING THE WOT

This section is about the WoT design in sight of devices
applications needs. Because WoT applications are mainly
typical Web applications, they can be designed using existing
Web frameworks.

A. Web applications for constrained servers

For efficient embedded Web applications design, some de-
sign practices have to be adapted from classical WWW ones.
Indeed, such applications are embedded into very constrained
hardware (see Section II-A), while Web browser are still
executed in relatively powerfull machines.

Web applications need to generate dynamically Web pages
and contents. The contents can be generated in the server-side
(using e.g., SSI technologies, PhP, JSP, . . .) or in the client-
side (using mainly JavaScript).

The AJAX[11] model allows to design highly interactive
applications with an efficient task repartition between the client
and the server. The behavior of an AJAX Web application can
be separated into two phases:

1) The loading phase. The client starts by collecting several
static files, containing style (CSS), contents (HTML),
and applicative code (JavaScript).

2) The running phase. The client (i.e., the browser) executes
the applicative code downloaded in the first phase, and
it interacts with the server by sending asynchronous
requests. Server responses are often small generated
contents; they are interpreted by the client and integrated
into the Web page.

This methodology reduces Web traffic because dynamically
generated contents are only semantic information interpreted
by the client. Formatting rules are loaded only once in the
initialization phase, thus factorizing information and reducing
redundancies. AJAX applications allow a workload deporta-
tion, from the Web server to the Web browser: the server sends
smaller generated data while the client runs behavioral code.
This is particularly interesting in our situation, where the Web
server has less resources than the Web client. AJAX strengths
make it incontrovertible for Web of Things applications.

B. Event notification

A common need for IoT devices consists in event notifica-
tion (e.g., for home automation, sensors, . . .). In a first sight,
HTTP seems unsuitable for such behavior. Nevertheless, a new
model, named Comet [12] appeared these last years, allowing
a Web application to push data from the server to the client.
A Comet protocol specification exist named Bayeux [13].

A comparison of AJAX pull and push (Comet) methods
is presented in [14]. It shows that, while Comet is better in
terms of data consistency and traffic workload, it suffers from
scalability issues in term of processing. Server-side comet
management is hard for two main reasons:

• Classical Web contents generator engine (e.g., for
Servlets, ASP, JSP or PhP), do not allow a request
handler to idle efficiently waiting for an event (thus giving
back the hand to the engine). That is why dedicated
frameworks and engines are developed to provide Comet
support [15], [16].

• The server has to store information about each client
listening for an event. Each TCP connections is kept
alive until an event occurs, implying a huge memory
consumption.

The scalability issue has been observed for hundreds of simul-
taneous connections, what should rarely occur in the context of
the WoT. Morehover, traffic and responsiveness improvement
is very important in the context of event notification, making
it well-designed for such an usage.

C. PAN management

Before acessing a device via its embedded Web server, this
last must have been detected and included into the PAN. The
insertion of objects into the PAN can be done by a DHCP
or a similar dedicated protocol, allowing automated IP (and
possibly URI) attribution.

D. Interaction between devices

The concept of IoT allows interaction between devices. We
claim that each interaction must be initiated by the central user
of the PAN. Such a care allows to know who is responsible
of every action. We take a simple example: a user need to
print the photos stored into its camera thanks to a printer.
Two solutions are available:

1) The user downloads all the photos from the camera. He
secondly uploads them from its computer to the printer,
and launches the print task.

2) The user gives the URI of the printer to the camera
(via a dedicated input box in the Web application of the
camera), and asks it to launch the print.

The first solution is very simple and easy to implement: the
two Web applications only provide a download or upload page.
This solution nevertheless bridles device applications because
they can not explicitly interact. Furthermore, this involves
several user manipulations, and uses the client computer as
a data buffer.

The second solution enables a real Internet of Things,
allowing devices to interact with other nodes of the PAN or
with an external network, like the Internet. This solution allows
any EWS to access to an other device, as soon as it knows
its URI (furnished by a user, or an other EWS). By using
mashup (building Web pages from both local and external
resources), this allows very rich embedded Web applications
development. As an example, the Web pages served by the
camera can furnish informations about the printer ink level.

The authentication of the interaction initiator can be done
thanks to a ticket mechanism. In our example, the user first
gets a ticket to the printer. He then provides this ticket to
the camera (by including it into the camera URI). Such a
mechanism disallows devices to initiate interaction without a
user to be explicitly responsible of the act.

E. Interaction with a PAN from an external network

In some situations, it should be interesting to access dis-
tant objects from an external network like the Internet. We
introduce the notion of Virtual PAN (VPAN) as a PAN built
around an access point instead of a user. As an example, a
home can have a VPAN access point, directly connected to
numerous objects in the home. A user can access its home
personal devices through such a access point, since this last is
accessible from the Internet.

V. HANDLING WEB TRAFFICS IN CONSTRAINED
HARDWARE

Most of the software designed for embedded devices use
event-driven approaches to fit with highly constrained hard-
ware. Indeed, threaded models waste a lot of memory. Event-
driven approaches are extremely efficient to implement state-
less behaviors. Stateful behaviors are a bit more complex to
implement, requiring often multiple state storage and man-
agement. Both HTTP and IP are stateless protocols, while
TCP is statefull (notions of connection, sequence numbers,
acknowledgments).

In this section, we identify the critical parts of the
HTTP/TCP/IP protocol stacks, regarding their requirements in
terms of memory and traffic.

A. HTTP: a half duplex protocol over TCP

TCP (defined in [17]) can be used for any kind of applica-
tions, allowing bidirectional reliable communications. In TCP,
data can be sent asynchronously by the two hosts. TCP allows
data piggybacking, i.e., sending a segment containing both data

and acknowledgment. This makes TCP void acknowledgments
less frequent.

In fact, when using HTTP, TCP has a particularly simple and
predictable behavior: the client sends a request then it waits
for a response from the server. At the HTTP level, only one
of the two hosts is sending data at a time. As a consequence,
on a given TCP connection, while the client or the server is
sending data (resp. a request or a response), it does not receive
anything else than TCP void acknowledgments (data are rarely
piggybacked).

B. Impact of the TCP MSS

When establishing a TCP connection, a Maximum Segment
Size (MSS) is negotiated between the two hosts. The minimal
legal MSS is of 200 bytes. The most commonly used MSS is
of 1460 bytes because this size fits well with ethernet packet
size.

Using large TCP MSS allows to have better performances,
because TCP and IP use mainly fixed size headers. This is
a stateless property, but it require to manage large packets,
which is an issue on memory-constrained systems.

C. Supporting HTTP keep-alive

HTTP has been designed to run over TCP. Since HTTP 1.1
[18], a keep-alive option encourage consecutive HTTP re-
quests to use a single TCP connections. This allows to avoid
numerous connections establishments and closing, which cost
grows with the link latency. Indeed, connection establishment
and closing involve respectively a 3-ways and a 4-ways
handshakes.

The support of HTTP keep-alive require to manage multiple
TCP connections simultaneously. It is a stateful property that
is hard to handle in memory-lightweight event-driven systems.

D. Impact of the TCP delayed acknowledgments

TCP delayed acknowledgments is a policy used to reduce
the amount of TCP traffic caused by void acknowledgments.
It is implemented by most of the desktop computers TCP/IP
stack (both Windows and MacOS stacks). A TCP host that
implements TCP delayed ACKs only acknowledges a segment
(i) 200ms after having received it or (ii) when a second
segment is received.

Embedded TCP/IP stacks often don’t support more than
one in-flight TCP segment. In fact, when several segments are
unacknowledged, the sender has to keep them into memory to
be able to retransmit it in case of a packet loss. Having only
one in-flight segment allows very lightweight and stateless
TCP implementations, but it interacts badly with the delayed
ACKs policy: in such situation, the 200ms delay will always
be triggered, limiting the sending rate to 5 packets per seconds.

VI. PROTOTYPE ARCHITECTURE AND EXPERIMENTATIONS

Starting from our study about the Web application needs
(see Section IV) and our cross-layer analysis of the Web
protocols (see Section V), we designed a new embedded
Web sever, named Smews. In this section, we describe its

novel Web application framework, architecture and, thanks
to an implementation, we present performance measurements
compared to existing solutions.

A. Web application framework

As said in Section IV, Web applications make use of dy-
namic contents generation. The AJAX model is based on both
server-side and client-side contents generation. We propose a
model where a directory is a Web applications, containing:

• Static files (of any type: html, js, css, jpg, . . .)
• Server-side generators

– Generators (native functions)
– OgO files (PhP-like) with native code
– Comet generators (native functions)

Thanks to a dedicated tool, all these contents are pre-processed
at compile-time in order to build the final binary files, con-
taining the Web server and the Web applications. This pre-
processing also allows us to do numerous optimizations on the
contents to serve (e.g., checksum pre-calculations, TCP and IP
headers parts pre-calculation, . . .). Figure 1 shows how files
are processed in our tool-chain.

Web pages

OgO files
Generated C

S.-S. Generators

Engine

Executable

Preprocessor

C compiler

Figure 1. Smews compilation tool-chain

B. Proposed architecture

We propose to use an event-driven architecture with the
granularity of IP packets. Several simultaneous connections
can be handled, but never more than one packet is processed
at a time. We propose a very particular buffers management
for packets reception and sending.

1) Packet reception: Our event-driven approach allows to
use a single and shared buffer for packets reception. This
buffer can be of any size (possibly smaller than the packet
sizes), while incoming data are processed sufficiently rapidly.

2) Packet sending: Unlike general purpose TCP/IP stack,
an embedded Web server is ensured to always process HTTP
traffic. Most of the packets sent by a Web server in such
context are HTTP responses. By sharing information between
the Web application and the TCP/IP stack, we are able to
enhance the stack performances.

When sending a segment, a TCP stack has to keep it into
memory in case of future retransmission. In our case, when
it is possible, we discard every sent packet before receiving
its acknowledgment. If a retransmission is needed, we retrieve
again the data to send. This policy can only be applied to static
Web contents (files) and to idempotent (i.e., deterministic and
without any board effect) contents generators. Only in other

situations, we use a shared buffer to keep unacknowledged
segments into memory. For memory consumption reasons, we
impose a segment size limitation in such cases.

C. Benefits of our architecture

Our architecture make only use of a few (and reasonably
sized) shared buffers. The data structure used to store TCP
connections states don’t include any buffer, making it really
small (around 40 bytes). This makes possible to handle the
hot points we identified in Section V:

1) Support of multiple in-flight packets: Thanks to our
policy, our server is able to have several in-flight packets for
most of the Web contents it serves (static pages and idempotent
dynamic contents). In other situations, the amount of in-flight
segments is limited by the available memory.

2) HTTP persistent-connections handling: In our model,
TCP connections data structures are relatively small because
they don’t each embed their own buffers. Coupled with our
event-driven model where only on packet is processed at a
given time, handling several simultaneous TCP connections
is no more a problem. This makes possible HTTP keep-alive
implementation. This also allows us to implement an efficient
Comet solution for event notification.

3) Large TCP MSS handling: In input as in output, our
model is able to handle large-sized packets even with small-
sized buffers. This makes large TCP MSS handling easy.

D. Prototype and measurements

We put to the test our architecture and optimizations through
real Web of Things applications implementation and execution
in Smews. We made Smews source code publically available1.
It is fully written in C language, and has been ported to
multiple hardware architectures, allowing to run in sensors,
smart cards. . . .

We compare Smews performances with two existing em-
bedded Web servers. First, Miniweb [19], is a tiny Web server
which needs only a few tens of bytes of RAM. Its function-
alities are totally minimal, but it is able to serve simple static
Web contents. Secondly, uIP is a small embedded TCP/IP
[20] based on protothreads [21]. It requires more ressources
than Miniweb, but really provides more functionalities. It is
provided with a Web server.

Both Miniweb and uIP source codes are publically avail-
able. To allow fair comparisons, we ported Smews, uiP and
Miniweb to the same smart card, named Funcard. It uses a 8
bits AVR microcontroller at 8 MHz with 8 kB of RAM and
16 kB of EEPROM. The Funcard network interface is a serial
line, with a bandwidth of 10 kB/s. Its latency involves a TCP
RTT of around 5 ms.

E. Performances measurements

For our experiments, we use a workstation using Windows
XP as operating system, and Internet Explorer 6 as Web
browser, the very most common configuration of World Wide

1Smews source code available at: http://www2.lifl.fr/∼duquenno/Research/
Smews

Web clients2. It is important to remember that Windows
TCP/IP stack implements the TCP delayed ACKs strategy.

Our reference Web of Things application is a personal
contacts book manager embedded in the Funcard. By using
mashup, this application can be extended. As an example,
via a simple client-side script, we can enrich World Wide
Web contents with the private information: when the name
of somebody in your contacts book appears in a page, you
can get its detailled (and private) information by pointing the
name with the mouse.

The Web application is made of four static files and three
dynamic contents generators.

• index.html, style.css, logo.png: three static files of the
main page, of respectively 752, 826 and 5805 bytes

• script.js: the client-side scripts, including numerous
AJAX interactions, of 3613 bytes

• cb extract: a generator used to retrieve the whole con-
tacts book

• cb get: a generator that returns a single field of the
contacts book, specified by URL arguments

• cb add: a generator that adds a new contact or updates
a field (via URL arguments), and returns the current
number of contacts

In uIP, we have been able to implement a simple version of
the Web application, because the Web server provided with
uIP does not provide any mechanism for URL arguments
management. In Miniweb, only the static file of the application
can be served.

Content uIP Mweb Smews Speed factor
uIP

Smews
Mweb

Smews

index.html 752 B 0.70 0.14 0.16 × 4.5 × 0.9
style.css 826 B 0.70 0.14 0.16 × 4.4 × 0.9
script.js 3613 B 1.36 0.50 0.44 × 3.1 × 1.1
logo.png 5805 B 1.76 0.78 0.66 × 2.7 × 1.2
cb extract 1915 B 1.01 – 0.29 × 3.5 –
cb get 28 B 0.68 – 0.06 × 10.6 –
cb add 2 B 0.67 – 0.06 × 10.8 –
whole page 8.2 2.6 1.8 × 4.6 × 1.4

Table I
MEASURED PERFORMANCES on each content of the contacts book, for uIP,
Miniweb (noted Mweb) and Smews. The speed ratio between Smews and

the two reference Web servers are given.

uIP is a general purpose TCP/IP stack, so its Web server
don’t benefit of cross-layer protocol optimizations. Unlike
Smews, uIP need to store every in-flight packet (for possible
retransmissions), because it don’t know any property about
the HTTP data it is sending. For memory savings reasons, uIP
never has more than one in-flight packet.

uIP is extremely slow in comparison with Miniweb and
Smews, because of its limitation to a single in-flight packet.
It needs 8.2 s to serve the main Web page. Smews is faster
than Miniweb (except for the two smallest static files) and,
unlike it, it provides a support for dynamic contents generators.

2World Wide Web browsers statistics available at http://www.w3schools.
com/browsers/

Smews is 1.4 times faster than Miniweb for the whole Web
page service, mainly because it handles large TCP MSS.

F. Memory consumption comparison

Server Volatile memory Persistent memory
Globals Stack Total Code RO Total

uIP 3.2 k 118 3.3 k 11.4 k 916 12.3 k
Miniweb 54 52 106 3.7 k 696 4.4 k
Smews 118 108 226 7.1 k 636 7.7 k

Table II
SERVERS MINIMAL MEMORY CONSUMPTIONS ON OUR REFERENCE

FUNCARD (IN BYTES)

Table II presents the minimal memory needs of uIP server,
Miniweb and Smews, including theirs TCP/IP stack and device
drivers3. uIP and Smews simultaneous connection number is
set to one (note that Miniweb always suffer of this limitation).
The measurements are done for the Funcard target.

uIP Web server needs more memory than the two stand-
alone Web servers, Miniweb and Smews. Its minimal volatile
memory consumption is of 3.2 kB. Its persistent memory
footprint is also significantly higher than Miniweb and Smews
ones. uIP Web server presents the worst performances and
the higher memory footprint. This illustrates the overheads
involved when using a general purpose TCP/IP stack with a
layered implementation. Most of this server limitations (in-
flight packets limitation, non-persistent HTTP connections,
dynamic contents cutting before sending, etc) are compromises
done to limit the memory usage.

Miniweb has the lowest memory consumption, with around
100 bytes of volatile memory and 4.4 kB of persistent memory.
It is important to keep in mind that Miniweb is really func-
tionally minimal: it is unable to send dynamically generated
contents, to handle multiple TCP connection and to read HTTP
requests contents. These limitations make it unusable for WoT
implementation in practice.

Smews needs 226 bytes of RAM and 7.7 kB of persistent
memory. When compared to usual smart cards or sensor hard-
wares, this memory footprint lets most of the device memory
available for user Web applications. Smews has already been
ported to several other hardwares than Funcards (8 bit AVR
and 8 kB of RAM): WSN430 sensors (16 bit MSP430, 10 kB
RAM), MicaZ sensors (8 bit AVR, 4 kB RAM) and a platform
using a 32 bits Arm7 and 32 kB of RAM.

VII. CONCLUSIONS

We analyzed the needs of the Internet of Things, and
proposed a new approach to implement it, based on Web
protocols. We shown that the Web of Things allows efficient
and rich interaction between users and devices. This approach
requires to embed Web servers in surrounding devices we want
to interact with.

We proposed a cross-layer study of the Web protocols in
terms of traffic and memory needs. From this analysis, we

3We used exactly the same device drivers for the three Web servers.

designed an efficient event-driven architecture for embedded
Web servers.

Finally, we implemented our proposals to prove their fea-
sibility. Measurements done on our prototype shown that it is
effectively possible to embed a Web server in very constrained
hardware, with only a few kilo-bytes of persistent memory and
a few hundred of volatile memory. This prototype is fully able
to support Web of Things needs: it supports multiples simul-
taneous connections, persistent connections, dynamic contents
service, event notification (comet), etc.

In our future works, we will focus on security issues: we
would like to evaluate the costs of TLS support in embedded
Web servers, mainly in terms of energy and memory usage.

REFERENCES

[1] “Upnp forum,” 2008, http://www.upnp.org/.
[2] Y. Gsottberger, X. Shi, G. Stromberg, T. Sturm, and W. Weber,

“Embedding Low-Cost Wireless Sensors into Universal Plug and Play
Environments,” EWSN, January, 2004.

[3] H. Song, D. Kim, K. Lee, and J. Sung, “UPnP-Based Sensor Network
Management Architecture,” Proc. International Conference on Mobile
Computing and Ubiquitous Networking, 2005.

[4] S. Siorpaes, G. Broll, M. Paolucci, E. Rukzio, J. Hamard, M. Wagner,
and A. Schmidt, “Mobile Interaction with the Internet of Things,”
Embedded Interaction Research Group, 2004.

[5] E. Rukzio, M. Paolucci, M. Wagner, H. Berndt, J. Hamard, and
A. Schmidt, “Mobile Service Interaction with the Web of Things,” 13th
International Conference on Telecommunications (ICT 2006), Funchal,
Madeira island, Portugal, 2006c., 2006.

[6] S. microsystems, “Jxta technology,” 2008, http://www.sun.com/software/
jxta/.

[7] B. Traversat, M. Abdelaziz, D. Doolin, M. Duigou, J. Hugly, and
E. Pouyoul, “Project JXTA-C: enabling a Web of things,” System
Sciences, 2003. Proceedings of the 36th Annual Hawaii International
Conference on, p. 9, 2003.

[8] A. Wilson, “The challenge of embedded internet design,” Real-Time
Magazine, pp. 78–80, 1998.

[9] I. Agranat, “Engineering web technologies for embedded applications,”
Internet Computing, IEEE, vol. 2, no. 3, pp. 40–45, May-June 1998.

[10] T. Lin, H. Zhao, J. Wang, G. Han, and J. Wang, “An embedded web
server for equipments,” ispan, vol. 00, p. 345, 2004.

[11] J. J. Garrett, “Ajax: A new approach to web applications,” Adaptivepath,
AdaptivePath, 2005.

[12] A. Russell, “Comet: Low latency data for the browser,” Dojo Toolkit,
Dojo Toolkit, 2006.

[13] Dojo, “Dojo fundation bayeux protocol,” 2008, http://svn.xantus.org/
shortbus/trunk/bayeux/bayeux.html.

[14] E. B. A. Mesbah and A. van Deursen, “A comparison of
push and pull techniques for ajax,” in Proceedings of the 9th
IEEE International Symposium on Web Site Evolution (WSE),
S. uang and M. D. Penta, Eds. IEEE Computer Society, 2007,
pp. 15–22. [Online]. Available: http://swerl.tudelft.nl/twiki/pub/Main/
TechnicalReports/TUD-SERG-2007-016.pdf

[15] Dojo, “Cometd the scalable comet framework,” 2008, http://cometd.
com/.

[16] Mortbay, “Jetty web server,” 2007, http://jetty.mortbay.org/.
[17] J. Postel, “Rfc 793: Transmission control protocol,” Sep. 1981. [Online].

Available: http://www.faqs.org/rfcs/rfc793.html
[18] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee, “Hypertext transfer protocol – http/1.1,” United States,
1999.

[19] A. Dunkels, “The proof-of-concept miniweb tcp/ip stack,” 2005, http:
//www.sics.se/∼adam/miniweb/.

[20] ——, “Full tcp/ip for 8-bit architectures,” in MobiSys ’03: Proceedings
of the 1st international conference on Mobile systems, applications and
services. New York, NY, USA: ACM Press, 2003, pp. 85–98.

[21] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: simplifying
event-driven programming of memory-constrained embedded systems,”
in Proc. of SenSys ’06. New York, NY, USA: ACM Press, 2006, pp.
29–42.

