
The Web of Things: interconnecting devices with high usability and performance

Simon Duquennoy
IRCICA/LIFL,

CNRS UMR 8022,
INRIA Lille - Nord Europe,

Univ. Lille 1, France
simon.duquennoy@lifl.fr

Gilles Grimaud
IRCICA/LIFL,

CNRS UMR 8022,
INRIA Lille - Nord Europe,

Univ. Lille 1, France
gilles.grimaud@lifl.fr

Jean-Jacques Vandewalle
Gemalto Technology &

Innovations,
France

jean-jacques.
vandewalle@gemalto.com

Abstract

In this paper, we show that Web protocols and technolo-
gies are good candidates to design the Internet of Things.
This approach allows anyone to access embedded devices
through a Web application, via a standard Web browser.
This Web of Things requires to embed Web servers in
hardware-constrained devices. We first analyze the traf-
fics embedded Web servers have to handle. Starting from
this analysis, we propose a new way to design embedded
Web servers, using a dedicated TCP/IP stack and numer-
ous cross-layer off-line pre-calculation (where information
are shared between IP, TCP, HTTP and the Web applica-
tion). We finally present a prototype – named Smews – as
a proof of concept of our proposals. It has been embedded
in tiny devices (smart cards, sensors and other embedded
devices), with a requirement of only 200 bytes of RAM and
7 kilo-bytes of code. We show that it is significantly faster
than other state of the art solutions. We made Smews source
code publically available under an open-source license.

1 Introduction

Today, more and more devices are ubiquitously running
around us. Traditional communication schemes make use
of heterogeneous protocols, softwares and user interfaces,
making hard devices interaction. Users would like to eas-
ily access public devices, whatever their implementation
choices.

In the literature, this global devices interconnection is
called the Internet of Things (IoT). This does not refer to
any technology nor any network structure, but only to the
idea of interconnecting objects as well as we interconnect
computers with the Internet.

Nowadays, more and more services are provided on the
Internet using Web applications. We propose to use this

same model for surrounding devices. We call Web of Things
(WoT) the idea of accessing surrounding devices through
Web applications. This concept provides a great accessibil-
ity for devices and makes them easier to program. Further-
more, embedded Web contents can be merged with Internet
ones, opening new perspectives for Web applications.

The Web of Things require to embed Web servers in
small devices. At first sight, implementing a HTTP/TCP/IP
stack on devices with only a few hundreds of bytes of
RAM and a few kilo-bytes of EEPROM seems unsuitable.
We show that an event-driven architecture allows to im-
plement extremely lightweight Web servers with efficient
cross-layer optimizations. We detail these optimizations
and measure their benefits.

This paper is organized as follows. Section 2 is a state
of the art of existing Internet of Things solutions. It also
introduces the concept of Web of Things. In Section 3, we
describe how WoT applications can be designed. Section 4
presents an analysis of the traffics an embedded Web server
has to manage, in order to identify critical points for em-
bedded Web server design. We present a new event-driven
architecture for embedded Web servers in Section 5. In Sec-
tion 6, we prove the feasibility of Web of Things via a proto-
type. We measure the benefits of our proposals by compar-
ing our prototype to state of the art embedded Web servers.
We finally conclude in Section 7.

2 State of the Art

In this section we define the Internet of Things and we
describe existing standards and solutions for IoT protocols.

2.1 The Internet of Things

Numerous works have been done to define the Internet
of Things and to associate technologies and network archi-
tectures to this – still abstract – concept. The exponentially

growing amount of devices around us require efficient inter-
action schemes allowing anyone to access easily any object.
The notion of Personal Area Network (PAN) is often used
referring to IoT networks. A PAN is a volatile and spatially
local network that includes every objects a pearson should
interact with. The main concerns of PANs are defined in
[21, 17]. They can be summarized as follows: (i) objects
discovery and addressing must handled by the PAN proto-
cols (ii) devices must be able to interact with the whole PAN
and possibly with external networks and (iii) operations and
interactions done into a PAN must be secured.

It must be noticed that the nodes of the PAN are mainly
hardware constrained devices. They often have a few kilo-
bytes of volatile and persistent memory, a CPU frequency
of a few MHz, hard energy constraints, and low-throughput
physical links (e.g., Bluetooth, USB, ZigBee, . . .).

2.2 UPnP: the widespread standard for PANs

UPnP [1] is a set of protocols promulgated by the UPnP
forum. It is today the most spread solution for PAN imple-
mentation. UPnP makes use of a lot of protocols and tech-
nologies, such as UDP, TCP, HTTP, HTTPU, Web services,
SOAP, WSDL, A UPnP network is flat, i.e., every ob-
jects included into a PAN have the same role and rights.

UPnP has nevertheless several drawbacks. First, it does
not propose any authentication protocol. This is a critical
security issue, allowing any device to configure any other
node of the PAN, without any user control. Secondly, UPnP
makes use of some unstandardized protocols like HTTPU.
Finally, UPnP is quite heavy because it is based on heavy
protocols (SOAP, WSDL, . . .). This makes it unusable into
very constrained hardware. In [12] and [22], a proxy is pro-
posed between the PAN and sensor nodes, because sensors
are unable to embed the whole UPnP stack.

2.3 Alternatives to UPnP

The JXTA technology [14] is a solution for peer-to-peer
applications design, allowing to interconnect heterogeneous
devices into a same network. JXTA-C [23] is a C implemen-
tation of JXTA, making it usable into contrained hardwares.
Nevertheless, JXTA are not built on standardized protocols.

DPWS (Devices Profile for Web Services) is the official
successor for UPnP. Its main objective is to allow secured
Web services usage. The set of protocols it uses is similar to
UPnP one, making it also hard to embed into tiny devices.

It is shown in [24] that an intersting solution for global
devices interconnection consists in using embedded Web
severs (EWS). It is shown in [13, 8] that devices with a few
kB of RAM and of EEPROM are able to run a Web server.

2.4 Towards a Web of Things

After years of hindsight, we observe that the success of
the Internet is due to very simple applications usage: mainly
the Web and e-mails. Nowadays, Web technologies are im-
pressively widespread, as well as anyone is able to access
Web servers from a personal computer, PDA or cell phone.

The Web of Things (WoT) consists in using Web proto-
cols and technologies into a client-centric PAN architecture.
The computer, PDA or cell phone of the user runs a client
(a standard Web browser) while every node into the PAN
runs an Embedded Web server. The client is able to access
any server included into its PAN. An object can possibly be
accessed by multiple users: in such situation, it is included
into several PANs.

This approach of WoT has a big advantage on UPnP: the
user is the only possible initiator of actions into its PAN.
A user may give long-term rights to objects (via a ticket),
thus allowing machine-to-machine interaction. In fact, Web
technologies are not only suitable for human-machine inter-
actions. The WoT is based on existing widespread technolo-
gies: TCP/IP, HTTP, Web applications. This ensures a great
accessibility as well as ease of development, via numerous
existing design frameworks. Secure interactions can be im-
plemented with HTTPS.

2.5 Embedding Web servers in tiny devices

Two points make possible the usage of Web servers in
constrained devices. First, unlike Internet Web servers, em-
bedded ones do not have to handle thousand simultaneous
connections and requests. Secondly, in the WoT, the Web
client is more powerfull than the server. By using AJAX
and Comet (presented in Section 3), we are able to deport
Web application processing from the server to the client.

Several works have been done about embedded TCP/IP
stacks, resulting in prototypes like TinyTCP [4], mIP [19]
or lwIP and uIP [7]. They only implement a subset of
TCP/IP RFCs, but they are able to communicate with usual
IP nodes. They provide a socket-like interface for embed-
ded applications. Embedded Web servers can be written
over such a TCP/IP stack. uIP is a simple event-driven
TCP/IP stack is based on protothreads [9] and only requires
a few kilo-bytes of RAM.

An other approach consists in designing a Web server
that includes its own dedicated TCP/IP stack, allowing bet-
ter performances and lower memory costs. Numerous pro-
totypes of such embedded Web servers have been proposed:
WebIt [13], iPic Web server [20] or Miniweb [8]. Most of
them are provide only poor functionalities: minimalist TCP
support, limitation to simple static Web pages, etc. They
nevertheless show that functionnay minimal Web servers
can run with only a few tens of bytes of RAM.

2

Miniweb and uIP particularly drawn our attention, and,
because their source code are publically available (note that
a Web server is provided with uIP), we choose them as ref-
erences for our experiments in Section 6.

3 Designing Web of Things applications

In this section, we present some basics about embedded
Web applications design. Then, we introduce two typical
Web of Things applications we choose as references for our
analysis and experiments.

3.1 AJAX: the incontrovertible Web application
methodology

Modern Web applications need to generate dynamically
Web pages and contents. The contents can be generated on
the server-side (e.g., using SSI technologies, PhP, JSP, . . .)
or on the client-side (using mainly JavaScript).

The AJAX[11] model allows to design highly interactive
applications with an efficient task repartition between the
client and the server. The behavior of an AJAX Web appli-
cation can be separated into two phases:

1. The loading phase. The client (i.e., the browser) col-
lects several static files, containing style (CSS), con-
tents (HTML), and applicative code (JavaScript).

2. The running phase. The client executes the applicative
code downloaded in the first phase, and interacts with
the server by sending asynchronous requests, allowing
the Web page to update itself dynamically.

Figure 1 shows the repartition of HTTP content lengths
returned during the two distinct AJAX phases when brows-
ing on well-known AJAX applications (e.g.,, Gmail1,
Google Calendar2 and Yahoo! mail3). Results show
that during the first phase, numerous large-sized con-
tents (mainly static files) are served (average returned size
about 8 kB). During the second phase, small-sized contents
(mainly generated by the server) are received by the client
(average returned size about 600 bytes).

AJAX reduces Web traffic because dynamic contents
are only semantic information interpreted by the client.
Formatting rules are loaded only once in the initialization
phase, thus factorizing information and reducing redundan-
cies. AJAX applications allow a workload deportation from
the Web server to the browser: the server sends small gener-
ated data while the client runs behavioral code. This is par-
ticularly interesting for Web of Things applications, where
the Web server often has less ressources than the Web client.

1Gmail: http://mail.google.com
2Google Calendar: http://www.google.com/calendar
3Yahoo! mail: http://mail.yahoo.com

1-6
4

64
-12

8

12
8-2

56

25
6-5

12

51
2-1

k
1k

-2k
2k

-∞

10

20

30

Ph
as

e
1

di
st

.(
%

)

1-6
4

64
-12

8

12
8-2

56

25
6-5

12

51
2-1

k
1k

-2k
2k

-∞

10

20

30

Contents lengths (bytes)

Ph
as

e
2

di
st

.(
%

)

Figure 1. HTTP contents lengths distribu-
tion for sample AJAX applications in phase
1 (loading) and 2 (running)

3.2 Mashup: building Web applications from
multiple sources

A new trend in Web applications design is called
mashup. It consists in building Web pages using resources
retrieved from multiple Web servers. The most often, the
merge is done using AJAX. As an example, anyone can talk
about a movie in its personal blog, and, thanks to mashup,
include information about near movie theaters. Such infor-
mation are provided by an external server which provides
a JavaScript API for such an usage. Mashup opens new
perspectives for Web applications, and is particularly well-
designed for WoT, allowing heterogeneous devices to build
together a rich user interface.

3.3 Comet: event notification in Web context

A common need for embedded devices consists in event
notification (e.g., for home automation, sensors, . . .). In a
first sight, HTTP seems unsuitable for such behavior be-
cause it is based on a simple request/response model. Nev-
ertheless, a new model named Comet [18] appeared these
last years, allowing a Web application to push data from the
server to the client. A Comet protocol specification already
exists and is named Bayeux [5].

A comparison of AJAX pull and push (Comet) methods
is presented in [3]. It shows that, while Comet is better in
terms of data consistency and traffic workload, it suffers of
scalability issues in term of processing. Server-side comet

3

management is hard for two main reasons. First, classical
Web contents generator engine (e.g., for Servlets, ASP, JSP
or PhP), do not allow a request handler to idle efficiently
waiting for an event (thus giving back the hand to the en-
gine). That is why dedicated frameworks and engines are
designed to provide Comet support [6, 15]. Secondly, the
server has to store information about each client listening
for an event. Each TCP connections is kept alive until an
event occurs, implying a huge memory consumption.

Scalability issues have been observed for hundreds of
simultaneous connections, what should rarely occur in the
context of the WoT. Morehover, traffic and responsiveness
improvement is very important in the context of event noti-
fication, making it well-designed for such an usage.

3.4 Web of Things applications examples

Based on the Web technologies we presented, interesting
Web of Things applications can be designed. We propose
two examples of such applications.

3.4.1 A shared calendar preserving privacy

On-line Web calendars are a great example of widely used
Web 2.0 applications. They mainly have two strengths: (i)
they are accessible by their users anywhere they are lo-
cated and from any workstation, PDA or cell phone and (ii)
they allow users to share information about their availabil-
ity. On-line calendars also have issues are in terms of pri-
vacy and connectivity. First, they require to store private
information on Internet servers. Secondly, they are not ac-
cessible without an Internet access.

By building a Web of Things application on a smart card
coupled with an on-line Web application, we propose a sim-
ple solution to both privacy and connectivity issues. Thanks
to mashup, private information details can be stored and
managed by the smart card in a secured environment near
the user. Other information are shared on-line. Moreover,
even with no Internet connexion, the calendar can be ac-
cessed and modified by its owner. Once an Internet access
is found, public information are updated from a subset of
the smart card information. By placing the calendar in a
personal device, we also enrich one of the main strengths of
Web calendars: their accessibility.

3.4.2 A personal contacts book

Our second application example is a personal contacts Book
manager. Private information about the user contacts are
stored and managed by the smart card, and are accessible
even with no Internet access. By using mashup (see Sec-
tion 3), this application can be extended. As an example,
via a simple client-side script, we can enrich World Wide
Web contents with the private information: when the name

of somebody in your contacts book appears in a page, you
can get its detailled (and private) information by pointing
the name with the mouse.

4 Handling Web traffics in tiny devices

Most of the software designed for embedded devices use
event-driven approaches to fit with highly constrained hard-
ware. Indeed, threaded models waste a lot of memory.
Event-driven approaches are efficient to implement state-
less behaviors. Stateful behaviors are more complex to im-
plement, requiring often multiple state storage and manage-
ment. Both HTTP and IP are stateless protocols, while TCP
is statefull (notions of connection, sequence numbers, ac-
knowledgments). In this section, we identify the critical
parts of the HTTP/TCP/IP protocol stack, regarding their
requirements in terms of memory and traffic.

4.1 HTTP: a half duplex protocol over TCP

TCP (defined in [16]) can be used for any kind of ap-
plications, allowing bidirectional reliable communications.
In TCP, data can be sent asynchronously by the two hosts.
TCP allows data piggybacking, i.e., sending a segment con-
taining both data and acknowledgment. This makes TCP
void acknowledgments less frequent.

In fact, when using HTTP, TCP has a particularly simple
and predictable behavior: the client sends a request then it
waits for a response from the server. At the HTTP level,
only one of the two hosts is sending data at a time. As a
consequence, on a given TCP connection, while the client
or the server is sending data (resp. a request or a response),
it does not receive anything else than TCP void acknowl-
edgments (data are rarely piggybacked).

4.2 Impact of the TCP MSS

When establishing a TCP connection, a Maximum Seg-
ment Size (MSS) is negotiated between the two hosts. The
minimal legal MSS is of 200 bytes. A MSS of 1460 if of-
ten used because it fits well with ethernet packet size. Using
large TCP MSS allows to have better performances, because
TCP and IP use mainly fixed size headers. This require
to manage large packets, which is an issue on memory-
constrained systems.

4.3 Supporting HTTP keep-alive

HTTP has been designed to run over TCP. Since
HTTP 1.1 [10], a keep-alive option encourage consecu-
tive HTTP requests to use a single TCP connections. This
allows to avoid numerous connections establishments and
closing, which cost grows with the link latency. Indeed,

4

connection establishment and closing involve respectively
a 3-ways and a 4-ways handshakes. The support of HTTP
keep-alive requires to manage multiple TCP connections si-
multaneously. It is a stateful property that is hard to handle
in memory-lightweight event-driven systems.

4.4 Impact of the TCP delayed acknowledgments

TCP delayed acknowledgments is a policy used to re-
duce the amount of TCP traffic caused by void acknowl-
edgments. It is implemented by most of the desktop com-
puters TCP/IP stack (both Windows and MacOS stacks).
A TCP host that implements TCP delayed ACKs only ac-
knowledges a segment (i) 200ms after having received it or
(ii) when a second segment is received.

Embedded TCP/IP stacks often don’t support more than
one in-flight TCP segment. In fact, when several segments
are unacknowledged, the sender has to keep them into mem-
ory to be able to retransmit it in case of a packet loss. Hav-
ing only one in-flight segment allows very lightweight and
stateless TCP implementations, but it interacts badly with
the delayed ACKs policy: in such situation, the 200ms de-
lay will always be triggered, limiting the sending rate to 5
packets per seconds.

5 An event-driven architecture for an effi-
cient tiny Web server

Based on the WoT applications needs (Section 3) and on
our analysis of the Web protocols (Section 4), we designed
a new embedded Web sever, named Smews. In this section,
we describe its novel architecture and optimizations.

5.1 Smews presentation

Smews source code is publically available4. It is fully
written in C language, and has been ported to multiple hard-
ware architectures, allowing to run in sensors, smart cards
and other devices. Smews implements all the proposals we
describe in the next sections, and will be used for our exper-
iments in Section 6.

For study, our reference target is a smart card called Fun-
card, using 8 bits AVR microcontroller at 8 MHz with 8 kB
of RAM and 16 kB of EEPROM. The Funcard network in-
terface is a serial line, with a bandwidth of 10 kB/s.

5.2 An embedded Web server based on off-line
pre-calculations

As mentioned in Section 3, Web applications make use
of dynamic contents generation. The AJAX model is based

4Smews source code available at: http://www2.lifl.fr/

˜duquenno/Research/Smews

on both server-side and client-side contents generation. We
propose a model where a directory is a Web application,
containing static files (e.g., html, js, css, . . .) and server-side
generators. Server-side generators implemented by naive c
functions or by OgO files (PhP-like files).

Thanks to a dedicated tool, all these contents are pre-
processed at compile-time in order to build the final binary
files, containing the Web server and the Web applications.
Figure 2 shows how files are processed in our tool-chain.

Web pages

OgO files
Generated C

S.-S. Generators

Engine

Executable

Preprocessor

C compiler

Figure 2. Smews compilation tool-chain

The pre-processing phase of static contents allows us to
propose off-line optimizations such as protocol checksums
or headers pre-calculation.

5.2.1 HTTP, TCP and IP headers off-line generation

HTTP, TCP and IP headers have constant parts that our tool-
chains knows at compile-time. Each of these parts is stati-
cally build off-line, allowing the embedded TCP/IP stack to
run faster. It only has to complete variable parts of head-
ers (destination IP and port, sequence numbers, etc.). This
optimization is used for static contents as well as for server-
side generated contents. The major part of HTTP headers
are known at compile-time and can be pre-generated.

5.2.2 TCP checksums chunks pre-calculation

It is has been shown [2] that checksum calculation is a crit-
ical part of TCP/IP stacks in terms of processing. That
is why some tiny embedded Web servers like Miniweb
[8] compute TCP checksums on static Web contents at
compile-time. This is done by a dedicated tool, in charge
of pre-calculating each IP packet Miniweb will send when
serving a given file. This approach is very interesting, but
has a main drawback: it forces to fix the TCP MSS off-line
to the lower legal value: 200 bytes. Indeed, the client max-
imal MSS is unknown at compile time.

We measured the time spent by our prototype for various
phases when sending a IP packet. These measurements are
synthesized in Table 1, and show that more than 80 % of the
processing time is spent for TCP checksumming.

As Miniweb, we propose to compute TCP checksums
off-line, but, instead of pre-generating entire IP packets, we
compute checksums on files by data chucks of a given size.

5

Processing phase Time
IP header 0.3 ms
TCP header 0.4 ms
Segment checksum 2.9 ms
Total time 3.6 ms

Table 1. CPU Time spent by our prototype in
different sending phases

At runtime, the server only has to sum the partial checksums
in order to retrieve the final TCP checksum. This approach
does not set the TCP MSS at compile-time.

Chunk size Memory cost Proc. time Time saved
- 0 B 2.92 ms 0 %

4 B 704 B 1.48 ms 40 %
8 B 352 B 0.78 ms 59 %

16 B 176 B 0.39 ms 70 %
32 B 88 B 0.23 ms 75 %
64 B 44 B 0.16 ms 77 %

128 B 22 B 0.11 ms 78 %

Table 2. Chucked checksum pre-calculation
impact on processing time

Table 2 shows the performances obtained with various
chucks sizes. With a chunks size of 32 bytes, only 0.23 ms
are spent for checksum calculation, saving 75 % of the to-
tal running time. The chunks size has to be well chosen,
because too large chucks will badly fit with various MSS.

5.2.3 HTTP options parsing tree

When receiving a HTTP request, the Web server has to
parse its options. We propose to achieve this work using a
parsing tree, thus avoiding the need to completely store the
request in memory before processing it. This also avoids
the usage of multiple and heavy string comparisons. The
input is simply compared byte after byte with the tree. Be-
cause the web contents are known at compile time, the tree
synthesizes every possible URL. The list of possible URL
arguments for each web content is also fully pre-processed.
Such an approach allows to decode the whole HTTP request
without any buffer, and with a minimal processing cost.

5.3 Proposed architecture

The architecture we propose is event-driven with the
granularity of IP packets. Several simultaneous connections
can be handled, but never more than one packet is processed
at a time. We propose a very particular buffers management
for packets reception and sending.

5.3.1 Packet reception

Our event-driven approach allows to use a single and shared
buffer for packets reception. This buffer can be of any size
(possibly smaller than the packet sizes), while incoming
data are processed sufficiently rapidly.

5.3.2 Packet sending

Unlike general purpose TCP/IP stack, an embedded Web
server is ensured to always process HTTP traffic. Most of
the packets sent by a Web server in such context are HTTP
responses. By sharing information between the Web appli-
cation and the TCP/IP stack, we are able to enhance the
stack performances.

When sending a segment, a TCP stack has to keep it into
memory in case of future retransmission. In our case, when
it is possible, we discard every sent packet before receiv-
ing its acknowledgment. If a retransmission is needed, we
retrieve again the data to send. This policy can only be ap-
plied to static Web contents (files) and to idempotent (i.e.,
deterministic and without any board effect) contents gener-
ators. Only in other situations, we use a shared buffer to
keep unacknowledged segments into memory.

5.4 Benefits of our architecture

Our architecture make only use of a few (and reasonably
sized) shared buffers. The data structure used to store TCP
connections states don’t include any buffer, making it really
small (less than 40 bytes). This makes possible to handle
the critical points we identified in Section 4:

Support of multiple in-flight packets Thanks to our pol-
icy, our server is able to have several in-flight packets for
most of the Web contents it serves (static pages and idem-
potent dynamic contents). In other situations, the amount of
in-flight segments is limited by the available memory.

HTTP persistent-connections handling In our model,
TCP connections data structures are relatively small be-
cause they don’t each embed their own buffers. Coupled
with our event-driven model where only on packet is pro-
cessed at a given time, handling several simultaneous TCP
connections is possible. This makes possible HTTP keep-
alive implementation. This also allows us to implement an
efficient Comet solution for event notification.

Large TCP MSS handling In input as in output, our
model is able to handle large-sized packets even with small-
sized buffers. This makes large TCP MSS handling easy,
even with um pre-calculations.

6

6 Experiments

We put to the test our architecture and optimizations
through real Web of Things application implementation and
execution in Smews. We compare Smews performances
with the two state of the art solutions we presented in Sec-
tion 2: Miniweb and uIP. Miniweb functionalities are min-
imal, but it only require a few tens of bytes of RAM. uIP
Web server needs more ressources than Miniweb, but really
provides more functionalities. To allow fair comparisons,
we ported the three servers to the same target: the Funcard,
described in Section 5.1.

As far as we know, no benchmark have been proposed
for embedded Web servers. We compared the performances
of the three servers on the contacts book application we
presented in Section 3. We also made the source code of
the applications publically available in order to provide a
benchmark for other works.

6.1 Performances measurements

For our experiments, we use a workstation using Win-
dows XP as operating system, and Internet Explorer 6
as Web browser, the very most common configuration
of World Wide Web clients5. Remember that Windows
TCP/IP stack implements the TCP delayed ACKs strategy.

The contacts book Web application is made of four static
files and three dynamic contents generators.

• index.html, style.css, logo.png: three static files of
the main page, of respectively 752, 826 and 5805 bytes

• script.js: the client-side scripts, including numerous
AJAX interactions, of 3613 bytes

• cb extract: a generator used to retrieve the whole con-
tacts book

• cb get: a generator that returns a single field of the
contacts book, specified by URL arguments

• cb add: a generator that adds a new contact or updates
a field (via URL arguments), and returns the current
number of contacts

In uIP, we have been able to implement a simple version
of the Web application, because the Web server provided
with uIP does not provide any mechanism for URL argu-
ments management. In Miniweb, only the static file of the
application can be served.

uIP is a general purpose TCP/IP stack, so its Web server
don’t benefit of cross-layer protocol optimizations. Unlike
Smews, uIP need to store every in-flight packet (for possible

5World Wide Web browsers statistics available at http://www.
w3schools.com/browsers/

Content uIP Mweb Smews Speed factor
uIP

Smews
Mweb

Smews

index.html 752 B 0.70 0.14 0.16 × 4.5 × 0.9
style.css 826 B 0.70 0.14 0.16 × 4.4 × 0.9
script.js 3613 B 1.36 0.50 0.44 × 3.1 × 1.1
logo.png 5805 B 1.76 0.78 0.66 × 2.7 × 1.2
cb extract 1915 B 1.01 – 0.29 × 3.5 –
cb get 28 B 0.68 – 0.06 × 10.6 –
cb add 2 B 0.67 – 0.06 × 10.8 –
whole page 8.2 2.6 1.8 × 4.6 × 1.4

Table 3. Measured performances on each con-
tent of the contacts book, for uIP, Miniweb (noted
Mweb) and Smews. The speed ratio between Smews
and the two reference Web servers are given.

retransmissions), because it don’t know any property about
the HTTP data it is sending. For memory savings reasons,
uIP never has more than one in-flight packet.

This limitation is the reason why uIP is extremely slow in
comparison with Miniweb and Smews. It needs 8.2 seconds
to serve the main Web page. Smews is faster than Miniweb
(except for the two smallest static files) and, unlike it, it pro-
vides a support for dynamic contents generators. Smews is
1.4 times faster than Miniweb for the whole Web page ser-
vice, mainly because it handles large TCP MSS. The reason
why this factor is greater than individual factors (varying
from 0.9 to 1.2) is that, unlike Smews, Miniweb do not sup-
port keep-alive connections.

6.2 Memory consumption comparison

Table 4 presents the minimal memory consumptions of
the three servers, including theirs TCP/IP stack and device
drivers6. For these measurements, Miniweb and Smews
use an input buffer of only one byte. uIP uses a buffer of
1500 bytes in order to support a MSS of 1460 bytes. uIP and
Smews simultaneous connection number is set to one (note
that Miniweb always suffers of this limitation). Measure-
ments are done on our reference target, the Funcard (pre-
sented in Section 5.1).

Server Volatile memory Persistent memory
Globals Stack Total Code RO Total

uIP 3.2 k 118 3.3 k 11.4 k 916 12.3 k
Miniweb 54 52 106 3.7 k 696 4.4 k
Smews 118 108 226 7.1 k 636 7.7 k

Table 4. Servers minimal memory consump-
tions on our reference Funcard (in bytes)

On our reference smart card, uIP Web server needs more
6We used exactly the same device drivers for the three Web servers.

7

volatile and persistent memory than the two monolithic Web
servers, Miniweb and Smews. Miniweb has the lowest
memory consumption, with around 100 bytes of volatile
memory and 4 kB of persistent memory. It is important
to know that Miniweb is unable to send generated contents,
handle multiple TCP connection or various MSS and de-
code HTTP requests. It can not support a Web application,
but is a nice low-bound in term of ressources requirements
for embedded Web server implementations.

Smews requires 226 bytes of volatile memory and 7.7 kB
of persistent memory. When compared to usual embedded
devices, this memory footprint frees most of the memory
available for user Web applications. Smews has already
been ported to several other hardwares than Funcards (8 bit
AVR and 8 kB of RAM): WSN430 sensors (16 bit MSP430,
10 kB RAM), MicaZ sensors (8 bit AVR, 4 kB RAM) and a
platform using a 32 bits Arm7 and 32 kB of RAM.

7 Conclusions

We analyzed the needs of the Internet of Things and pro-
posed a new approach to design it based on Web technolo-
gies, named Web of Things.

We proposed a study of the Web protocols in terms of
traffic and memory needs, thus identifying the main issues
for embedded Web server implementation. From this anal-
ysis, we designed an efficient event-driven architecture for
embedded Web servers. This architecture intensively uses
off-line pre-calculation, and, by sharing information be-
tween IP, TCP, HTTP and the Web application, it allows
new cross-layer optimizations.

Thanks to our prototype, we prove the relevance of the
Web of Things and the efficiency of our proposals, both in
terms of performance and of memory requirements. Smews
makes a gap in term of performance with the state of the
art solutions Miniweb and uIP. It is able to run with only a
few kilo-bytes of persistent memory and a few hundred of
bytes of RAM. This prototype is able to run rich Web ap-
plications: it supports multiples simultaneous connections,
persistent connections, dynamic contents service, event no-
tification (comet), etc.

In our future works, we will focus on security issues: we
would like to evaluate the costs of TLS support in embedded
Web servers, mainly in terms of energy and memory usage.

References

[1] Upnp forum, 2008. http://www.upnp.org/.
[2] M. Allman, V. Paxson, and W. Stevens. Rfc 2581: Tcp con-

gestion control, 1999.
[3] E. Bozdag, A. Mesbah, and A. van Deursen. A comparison

of push and pull techniques for ajax. In Proceedings of the
9th IEEE International Symposium on Web Site Evolution
(WSE), pages 15–22. IEEE Computer Society, 2007.

[4] G. H. Cooper. Tinytcp, 2002. http://www.csonline.
net/bpaddock/tinytcp/.

[5] Dojo. Cometd the scalable comet framework, 2008. http:
//cometd.com/.

[6] Dojo. Dojo fundation bayeux protocol, 2008.
http://svn.xantus.org/shortbus/trunk/
bayeux/bayeux.html.

[7] A. Dunkels. Full tcp/ip for 8-bit architectures. In MobiSys
’03: Proceedings of the 1st international conference on Mo-
bile systems, applications and services, pages 85–98, New
York, NY, USA, 2003. ACM Press.

[8] A. Dunkels. The proof-of-concept miniweb tcp/ip stack,
2005. http://www.sics.se/˜adam/miniweb/.

[9] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Pro-
tothreads: simplifying event-driven programming of
memory-constrained embedded systems. In Proc. of SenSys
’06, pages 29–42, New York, NY, USA, 2006. ACM Press.

[10] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext transfer protocol –
http/1.1, 1999.

[11] J. J. Garrett. Ajax: A new approach to web applications.
Adaptivepath, 2005.

[12] Y. Gsottberger, X. Shi, G. Stromberg, T. Sturm, and W. We-
ber. Embedding Low-Cost Wireless Sensors into Universal
Plug and Play Environments. EWSN, January, 2004.

[13] T. Lin, H. Zhao, J. Wang, G. Han, and J. Wang. An embed-
ded web server for equipments. ispan, 00:345, 2004.

[14] S. microsystems. Jxta technology, 2008. http://www.
sun.com/software/jxta/.

[15] Mortbay. Jetty web server, 2007. http://jetty.
mortbay.org/.

[16] J. Postel. Rfc 793: Transmission control protocol, Sept.
1981.

[17] E. Rukzio, M. Paolucci, M. Wagner, H. Berndt, J. Hamard,
and A. Schmidt. Mobile Service Interaction with the Web
of Things. 13th International Conference on Telecommu-
nications (ICT 2006), Funchal, Madeira island, Portugal,
2006c., 2006.

[18] A. Russell. Comet: Low latency data for the browser. Dojo
Toolkit, 2006.

[19] S. Shon. Protocol implementations for web based control
systems. International Journal of Control, Automation, and
Systems, 3:122–129, March 2005.

[20] H. Shrikumar. Ipic - a match head sized webserver., 2002.
[21] S. Siorpaes, G. Broll, M. Paolucci, E. Rukzio, J. Hamard,

M. Wagner, and A. Schmidt. Mobile Interaction with the
Internet of Things. Embedded Interaction Research Group,
2004.

[22] H. Song, D. Kim, K. Lee, and J. Sung. UPnP-Based Sen-
sor Network Management Architecture. Proc. International
Conference on Mobile Computing and Ubiquitous Network-
ing, 2005.

[23] B. Traversat, M. Abdelaziz, D. Doolin, M. Duigou, J. Hugly,
and E. Pouyoul. Project JXTA-C: enabling a Web of things.
System Sciences, 2003. Proceedings of the 36th Annual
Hawaii International Conference on, page 9, 2003.

[24] A. Wilson. The challenge of embedded internet design.
Real-Time Magazine, pages 78–80, 1998.

8

