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ABSTRACT
Ease of deployment has always been seen as a major selling point of
wireless sensor networks, yet experience has shown deployment to
be difficult. We argue that parts of these difficulties have come from
the lack of a generic networking layer and of well-tested, generic
transport protocols in traditional sensornet deployments. We be-
lieve that the use of low-power IPv6 can help by providing node-
level addressing, point-to-point routing, and generic well-tested
transport protocols. We evaluate the performance of HTTP/TCP
and CoAP/UDP over a duty cycled radio layer, showing that with
a small modification to the duty cycling layer results in a dra-
matic improvement in performance at a retained low power con-
sumption. Based on our experiences, we introduce an in-network
caching mechanism that significantly improves the performance of
software updates in incrementally deployed sensor networks. Our
results are the first steps towards a deployment tool for IP-based
sensor networks.

1. INTRODUCTION
Although ease of deployment is often touted as a primary advan-
tage of wireless sensor networks, deployment remains difficult [9,
15]. Part of this difficulty stems from the lack of a generic network-
ing layer. Existing sensor network systems are intended to serve a
single purpose, where all nodes serve the same purpose. For exam-
ple, many TinyOS deployments run periodic data collection with
the TinyOS Collection Tree Protocol (CTP) [6]. Likewise, many
Contiki deployments run periodic data collection with the Contiki
collect protocol. In such deployments, nodes that do not run the
collection protocol cannot route collection packets.

Moreover, to address individual nodes from the sink node, for ex-
ample to be able to configure the nodes, the collection protocol
cannot be used. Instead, all nodes must run an additional, dedicated
protocol in addition to the collection protocol. Similarly, for soft-
ware updates, the collection protocol cannot be used, so all nodes
must run one more, dedicated protocol. This makes networks in-
flexible and difficult to change after deployment. To make matters
worse, if those dedicated protocols are used only rarely, their be-
havior has often not been tested in the deployed system, which may
make them fail silently when they for once are needed, as shown by
experiences with network reprogramming in deployments [9, 15].
These are obviously not problems with data collection protocols
per se, but with the use of a single, dedicated protocol. With IP,
which is a generic network layer, this inflexibility goes away.

In many emerging sensor network applications, the network is het-
erogeneous. For example, in a building automation system, nodes
with light sensors can be placed in windows to determine the avail-

able sunlight [11] or near appliances to monitor their usage [13].
Both applications can make efficient use of the same hardware,
thereby invoking economics of scale in the manufacturing of the
devices, but their application is very different. By being able to dy-
namically change software at deployment time, one can tailor indi-
vidual deployments to their specific requirements without the need
for special hardware. Current sensor network deployment methods
do not support such applications.

Traditionally, the sensor network deployment problem has been ex-
plored as the problem of how or where to place individual sensors
to achieve good sensor or network coverage [17, 18]. Specialized
sensor placement systems also have been developed [10]. We ar-
gue that node configuration and software updates are other aspects
of the deployment problem that must be considered as well.

We make three contributions with this paper. First, we measure
the performance of RPL during incremental deployment, showing
that RPL is able to quickly find routes at a low energy cost dur-
ing network deployment. Second, we show that the performance
of HTTP/TCP and CoAP/UDP can be improved significantly by
adding a low-power streaming mechanisms at the radio duty cy-
cling layer. To the best of our knowledge, this is the first quantita-
tive comparison between HTTP/TCP and CoAP/UDP. Third, we in-
troduce a novel in-network caching mechanism for bulk data trans-
fer in low-power IP networks. This mechanism alleviates the need
for dedicated bulk data transfer protocols.

The remainder of this paper is structured as follows. In Section 2,
we discuss how the use of a generic sensor network layer helps de-
ployment. In Section 4 we evaluate the performance of the IETF
RPL protocol during deployment. In Section 5 we investigate soft-
ware installation over IP and in Section 6 we demonstrate that in-
network caching in a low-power IP network improves performance
of software installation. We discuss related work in Section 7. We
lay out the direction for future work in Section 8 and conclude the
paper in Section 9.

2. ADDRESSING THE DEPLOYMENT
PROBLEM WITH IP

We argue that the use of IP helps mitigate the sensor network de-
ployment problem. IP provides a generic network layer on top of
which applications can be built without having to provide low-level
network details such as routing. Transport and application proto-
cols atop IP provide established and well-tested mechanisms for
data transport for network reprogramming. Unlike dedicated pro-
tocols for software updates, which have not been tested for their
target environment, generic transport protocols are well-tested.



Should the transport layer not work in a particular deployment, the
network fails immediately instead of failing silently when the net-
work needs to be updated.

IP allows individual nodes to be addressed. During deployment,
this can be leveraged to configure nodes individually. This is
needed to set node-specific configuration parameters, and is par-
ticularly useful for heterogeneous deployments. By using an IP
routing protocol, nodes can be addressed even without the entire
network being deployed. This allows nodes to be assigned roles
and given configuration parameters in parallel with the network be-
ing deployed.

IP has a generic network layer that is shared by all nodes. Such
a layer allows applications to be deployed on only a few nodes,
without requiring the other ones to participate in the application.
This is in contrast to pure data collection protocols such as CTP and
Contiki collect, which require all nodes to participate in the data
collection network. Allowing nodes to run different applications,
yet collaborate to forward packets, is useful both for heterogeneous
deployments and during the deployment phase, when only a subset
of all nodes have been programmed with their applications.

IP provides generic transport layers as well. For network repro-
gramming, the IP architecture provides two alternatives: the TCP
and UDP transport protocols. TCP provides a reliable stream ser-
vice that can be used to transmit binaries to network nodes. But
TCP is known to have throughput issues in wireless networks due
to path losses being interpreted as congestion. Recently, new dedi-
cated protocols for low-power IP have been developed, such as the
CoAP protocol [12]. CoAP provides lightweight RESTful interac-
tions in constrained environment. It runs over UDP, and provides
a bulk data transfer mechanism. It performs its own loss detection
and retransmission to avoid falling into the same problems as TCP.

3. EXPERIMENTAL SETUP
To support our case, we present the performance of a set of deploy-
ment scenarios over low-power IP. We use the Contiki operating
system which provides an IPv6 implementation [5]. To be able
to perform controlled experiments, we use the Contiki simulation
environment for our measurements. The Contiki simulation envi-
ronment consists of the Cooja network simulator and the MSPsim
node-level emulator. Cooja is able to simulate independent random
losses. The MSPsim emulator provides a cycle-accurate emulation
of the individual nodes, including the radio transceiver, allowing
faithful emulation of timing-sensitive radio duty cycling protocols.
The motes software used in the simulation is a ready-to-use msp430
binary file including Contiki, the uIPv6 stack and ContikiRPL.

At the network layer, we use the IETF RPL protocol [16, 14]. The
RPL protocol builds a directed acyclic graph through which packets
can be efficiently routed to sink nodes. Although RPL is designed
to primarily be an efficient many-to-one data collection protocol, it
also supports any-to-any traffic. From the sink, RPL builds routes
to nodes inside the network. These routes are used to distribute
software to nodes in the network.

We use the ContikiMAC radio duty cycling protocol [3] because
of its energy efficiency: ContikiMAC has an idle duty cycle below
1%. To study the energy consumption, we use Contiki’s built-in
power profiler [4], which measures the time during which individ-
ual components are turned on. We use the radio on-time as a proxy
for energy consumption, partly because the radio transceiver is the
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Figure 1: The time between node boots up and until it becomes
part of the routing graph. The x-axis shows the number of hops
from sink.
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Figure 2: The radio duty cycle of the RPL nodes in Figure 1.

most power-demanding component in typical motes, and partly be-
cause it enables quantitative comparisons of our energy results with
those of others who may not use the same hardware platform as we
do. In the following sections, all figures show the mean and stan-
dard deviation of results gathered over 10 simulations.

4. INCREMENTAL NETWORK
DEPLOYMENT WITH RPL

We first measure the ability for low-power IP to address individ-
ual nodes during deployment. To investigate the performance of
RPL under different deployment scenarios, we run a set of simula-
tions based on three setups: incremental deployment starting with
the sink node (sink-first), incremental deployment starting with the
node farthest from the sink (sink-last), and random deployment
(random) starting with the sink. In all three cases, nodes are de-
ployed on a line, and each node can hear only its two immediate
neighbors. Nodes are deployed at a rate of one node each 30 sec-
onds.

We measure the time passed before new nodes are incorporated in
the routing graph, and the energy consumption per node during the
first 8 minutes after the first node was deployed. The reason for this
long duration is to let the RPL control traffic settle down. Figure 1
shows the results for the three different deployment orders. We use



default values for all RPL parameters, except for parameter Imin
which is set to approximately 4 s, instead of the default value of
8 ms. Imin determines a upper bound for how frequent RPL nodes
will broadcast routing information; a value of a few milliseconds
is not suitable for use with a duty-cycled radio. Additionally, new
nodes send RPL neighbor discovery (DIS) messages each minute
until they obtain a parent. In these experiments, we use a 15% link
loss rate.

Figure 1 shows the time it takes for each node to be incorporated
into the RPL routing graph. The time is measured per node, from
the moment the node is deployed and powered on, until it receives a
parent in the routing graph. The result is intuitive: the sink-last case
shows the highest latency because no nodes will obtain connectiv-
ity until the last node has finally been deployed. The sink-first case
shows the lowest latency because when a node is deployed, it can
be immediately incorporated into the routing graph because one of
its neighbors is already connected. The difference in connection
times between two neighboring nodes in the sink-last scenario is
33.9 s. Discounting the 30 s deployment interval yields a duration
of 3.9 s. In the sink-first scenario, this duration is just 0.4 s because
nodes receive routing information from candidate parents immedi-
ately after sending out the first DIS message.

Figure 2 shows the measured radio duty cycle for the three dif-
ferent scenarios. We see that the duty cycle is low (around 1.5%)
and although the duty cycle is relatively constant across the three
scenarios, the duty cycle for the sink-last case exhibits a linear be-
havior that peaks at node 2. This is due to the increased control
traffic resulting from the incremental deployment of nodes with no
connection to a routing graph. Such nodes send more frequent DIS
messages than nodes that are part of a routing graph, resulting in a
slightly higher power consumption. Node 1 has only one neighbor
(node 2), and is less affected by such traffic than the others are.

5. SOFTWARE INSTALLATION OVER
LOW-POWER IP

We now turn to investigating the performance of software updates
in low-power IP networks. In traditional sensor networks, software
updates have been distributed by using full-network flooding pro-
tocols such as Deluge. In the next section, we look into how such
behavior can be achieved in the IP architecture, whereas in this sec-
tion, we establish a baseline for software updates transmitted in a
point-to-point fashion. We set up a system where an application
server holds software that the nodes can request.

We use both UDP and TCP, the two main transport layer protocols
of the IP protocol stack. Control commands are sent using CoAP,
whilst the actual download of the application is done either using
CoAP or TCP. In the first case, we use CoAP chunked traffic: the
node requests consecutively every single chunk of the file. In the
second case, the node opens a TCP connection to the application
server and downloads the file. The node advertises a window of a
single segment, which allows for a low-footprint TCP implemen-
tation and avoids the well-known problems of TCP over wireless
links. In both cases, every part of the file (either CoAP chunk or
TCP segment) is sent and acknowledged one by one, having each
the maximum size that can fit a 802.15.4 frame.

Our duty-cycling protocol, ContikiMAC, is a sender-initiated pro-
tocol in which every node periodically checks the channel for traffic
(by default every 125 ms). When a node needs to send a packet, it
repeatedly sends it until it gets a link-layer acknowledgment from

the receiver. To save more energy, the sender remembers the tim-
ing of successful transmissions towards each of its neighbors, and
uses this information to synchronize future transmissions with the
receiver’s duty-cycling phase.

To accelerate multi-hop data forwarding, we add a mechanism in
which the duty cycling behaves differently in periods identified as
busy. Every time a node sends or transmits a packet, it triggers a
timer and switches to busy mode. The busy mode terminates when
the timer expires. We use a default timer duration of 1 second,
which means that the node is in a busy period if it handled some
traffic in the last second. During busy periods, we propose two
optimizations called streaming and snooping. This results in three
possible behaviors:

Default Do not adapt to busy periods;

Streaming Keep the radio on during busy periods. The synchro-
nization on the sender is disabled;

Snooping Increase the channel check frequency by a factor of 8
(64 cycles per second). The synchronization on the sender is
disabled as well.

Figure 3 shows the time and energy spent when installing an appli-
cation on a node depending on the size of the executable file. The
node is located 4 wireless hops from the application server. The
completion time and radio on-time are measured from the user’s
request to install a new code to the final notification confirming that
the process The completion time includes the download and the in-
stallation of the application. The overall cost is almost linear since
the download of the executable is from far the most demanding
operation regarding time and energy. Both snooping and stream-
ing mechanisms allow for a substantial acceleration of the process,
from more than 150 s to less than 50 s in the case of 12800 bytes
files. Regarding radio on-time, streaming is much more demanding
than snooping, which is almost as energy-efficient as default duty
cycling.

Figure 4 shows time and energy versus the number of wireless hops
from the node to the application server, for a 800 bytes executable
file (the size of a simple hello-world elf file for Contiki). We use a
loss rate of 5 %. Note that every node in the path have no other task
than packets forwarding. This operation that can be handled by any
IPv6-ready entity, independently of our deployment architecture.
Since CoAP chunks mode handles end-to-end retransmissions, all
the simulations ended with a successful data download and instal-
lation.

Figure 5 compares TCP with CoAP chunks with 4 hops, a 800 bytes
file and a loss rate of 5 %. In all configuration, both protocols pro-
vide similar results in time and energy. This is because in both
cases, bulk data transfer is handled in a chunk-per-chunk manner.
Here again, snooping and streaming provide fast operation (around
67 % faster than default), whilst default and snooping are the less
energy consuming solutions (81 % more efficient than streaming).
In all our experiments, snooping presents an interesting trade-off
between performances and energy. This shows that current stan-
dard solutions can be used for data transfer over duty-cycled net-
works, but can be improved significantly by adaptations made at
the MAC layer.
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Figure 3: Time and energy as a function of file size over 4 hops. Both time and energy grow linearly with the file size.
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Figure 4: Time and energy as a function of the number of hops with 5% per-hop loss. Both CoAP and TCP-based approaches
work well in a lossy environment. The default duty cycling mechanism is the slowest while streaming provides the highest energy
consumption. Snooping arguably presents the best time-energy trade-off.

6. EXPLOITING IN-NETWORK DATA
CACHING

During network configuration, a substantial amount of data might
need to be transmitted before the network becomes fully function-
ing. Several flooding protocols have been proposed for efficient
dissemination of data in a network [8, 7]. The aim of these proto-
cols is to deliver the same information to all nodes in the network.
Instead of proposing a new dedicated bulk data flooding protocol,
we investigate how existing standardized protocols can be used to
improve dissemination efficiency.

We evaluate two different application uploading strategies using
CoAP. One strategy lets all nodes download the application only
from the sink, as in the experiments in Section 5, while the other
lets nodes store the application to secondary storage once it has
been downloaded, and set up a CoAP server to let other nodes
download the application from it. The sink then sends a message to
a newly deployed node, specifying which host it should download
the application from. This strategy selects the physically nearest

node. Both strategies will initiate an application uploading to a
new node only if the previous node has completed. We evaluate
both strategies using the sink-first, and sink-last deployment sce-
narios from Section 4. The size of the application is 800 bytes, and
we use a packet loss rate of 15 %.

Figure 6 (a) shows the time it takes for each node to complete
the download of an application. The time is measured from the
moment the node is powered on, and, as in Section 5, until the
server has been notified that the download is complete. In the
sink-first case, the two strategies yield similar completion times
for nodes of lower number of hops from the sink, but the curves
diverge for nodes farther away. This is intuitive because, in the
no-caching case, the download times increase at least linear with
the number of hops, whereas in the caching case, the download
times are constant for all hops (disregarding the upload-initiation
and completion-notification messages).

For the sink-last case, completion times are similar for nodes far
away from the sink, and converge for nodes closer to the sink. This
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Figure 5: Comparing TCP with CoAP chunks. Both protocols provide similar results.
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Figure 6: In-network data caching reduces both installation time and energy consumption.

is a result of that nodes do not start a download until all earlier
deployed nodes have completed their downloads, and because no
node has connectivity to the sink until the last node is deployed. In
this case, it is clear that one could much faster obtain a partially
working network using a smarter algorithm for selecting the order
in which nodes should start downloading.

Figure 6 (b) shows the energy consumption of the experiments. The
plots for the two no-caching scenarios are similar. The plot for the
sink-last case is shifted upwards in relation to that of the sink-first
case, with an amount corresponding to the extra cost of waiting
until the last node is deployed before starting the download. Sim-
ilarly, in the caching case, comparing the consumption of the one
hop nodes in the sink-first and sink-last cases, an similar shift is
found. In the sink-first case, the average radio-on time is 8.7 s for
the caching case, and 20.0 s no-caching case. In other words, in-
network caching uses only 43.5% of the energy needed for the no-
caching case. In the sink-last case, caching needs approximately
70% of the energy (average radio-on times are 21.7 s and 15.1 s,
respectively).

7. RELATED WORK
Traditionally, the sensor network deployment problem has been ex-
plored as the problem of how to place sensors to achieve a good
sensor coverage [17], to achieve a good network coverage [18], or
as being tailored to a specific application [10]. Similarly, many
methods to reprogram a network of deployed nodes exist [2, 8, 7].

Beutel et al. [1] propose the use of a secondary network, a so-
called deployment support network, to solve parts of the deploy-
ment problem. The deployment support network enables statistics
gathering, and is intended to be used in the prototyping phase. In
the prototype by Beutel et al., Bluetooth was used as the secondary
network. By contrast., we aim at assisting deployments of the final
deployment, not only during the prototyping phase.

The problem of software updates has been thoroughly studied. Pro-
tocols such as Deluge [8] allow binaries to be transported across the
network. On the nodes, different ways to install the binary has been
investigated [2]. We present a viewpoint that is opposed to much of
this work: we argue that software updates should not be done us-
ing dedicated and specialized protocols but that generic protocols



provide improved stability.

8. FUTURE WORK
The results presented in this paper have been obtained through sim-
ulation only. While simulation is a powerful tool that allows us to
study the performance of protocols in a controlled way, the qual-
ity of the results depends heavily on the assumptions made by the
simulator. Bad assumptions can easily result in results that do not
match those obtained in an experimental setting. In our case, one
of the biggest sources of deviation from experimental results is the
loss model we have used, which assumes independent and iden-
tically distributed link losses. In reality, however, link losses fol-
low bursty patterns, which may significantly change the behavior of
HTTP/TCP and CoAP/UDP that we have observed in simulation.
Thus the natural next step for us is to move our experiments into a
testbed environment. Our system already runs in a testbed environ-
ment, but we have not yet made enough controlled experiments for
us to draw conclusions that can be presented here.

Our results suggest that IP indeed is a useful tool to use during de-
ployment. Based on our experiences, we are building a deployment
tool for IP-based sensor networks. The tool can be used to config-
ure and reprogram individual nodes based on their IP addresses. As
we’ve seen, in low-power IP networks based on RPL, nodes can be
addressed even during deployment, as long as there is a route to the
sink. We see this tool as a way to reduce the deployment cost of
IP-based sensor networks.

9. CONCLUSIONS
Deployment in wireless sensor networks has always been difficult.
We envision networks in which nodes are individually given dis-
tinct capabilities and applications during deployment, leveraging
IP as a generic network layer. This is opposed to traditional ap-
proaches where a dedicated protocol is used to update all the nodes
of a network. We evaluate the feasibility of an IP-based deployment
solution for duty-cycled sensor networks and show that the RPL
protocol is able to quickly find routes during network deployment.
We also show that a simple optimization in the duty-cycling layer
can substantially improve the performance of both TCP and UDP,
both in terms of throughput and energy consumption. Moreover,
we show that the performance of bulk data dissemination using
standard protocols can be significantly improved using in-network
caching, without resorting to dedicated or custom protocols. These
results point towards a future where sensor network deployment
can be made radically simpler by leveraging the mechanisms pro-
vided by low-power IP.
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[4] A. Dunkels, F. Österlind, N. Tsiftes, and Z. He. Software-based
on-line energy estimation for sensor nodes. In Proceedings of the
IEEE Workshop on Embedded Networked Sensor Systems (IEEE
Emnets), Cork, Ireland, June 2007.
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