
Orchestra: Robust Mesh Networks
Through Autonomously Scheduled TSCH

Simon Duquennoy1

simonduq@sics.se
Beshr Al Nahas2

beshr@chalmers.se
Olaf Landsiedel2
olafl@chalmers.se

Thomas Watteyne3

thomas.watteyne@inria.fr
1SICS Swedish ICT, Sweden

2Chalmers University of Technology, Sweden
3Inria, France

ABSTRACT
Time slotted operation is a well-proven approach to achieve
highly-reliable low-power networking through scheduling
and channel hopping. It is, however, difficult to apply time
slotting to dynamic networks as envisioned in the Internet
of Things. Commonly, these applications do not have pre-
defined periodic traffic patterns and nodes can be added or
removed dynamically.

This paper addresses the challenge of bringing TSCH
(Time Slotted Channel Hopping MAC) to such dynamic
networks. We focus on low-power IPv6 and RPL networks,
and introduce Orchestra. In Orchestra, nodes autonomously
compute their own, local schedules. They maintain multiple
schedules, each allocated to a particular traffic plane (ap-
plication, routing, MAC), and updated automatically as the
topology evolves. Orchestra (re)computes local schedules
without signaling overhead, and does not require any cen-
tral or distributed scheduler. Instead, it relies on the existing
network stack information to maintain the schedules. This
scheme allows Orchestra to build non-deterministic networks
while exploiting the robustness of TSCH.

We demonstrate the practicality of Orchestra and quantify
its benefits through extensive evaluation in two testbeds, on
two hardware platforms. Orchestra reduces, or even elim-
inates, network contention. In long running experiments
of up to 72 h we show that Orchestra achieves end-to-end
delivery ratios of over 99.99%. Compared to RPL in asyn-
chronous low-power listening networks, Orchestra improves
reliability by two orders of magnitude, while achieving a
similar latency-energy balance.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
Communication

Keywords
TSCH, RPL, Scheduling, Wireless Sensor Network

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SenSys’15, November 1–4, 2015, Seoul, South Korea..
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3631-4/15/11 ...$15.00.
DOI: http://dx.doi.org/10.1145/2809695.2809714.

TSCH beacon schedule
RPL traffic schedule

Application traffic schedule

Orchestra schedule

1 slot = 10ms

Time

Figure 1: In Orchestra, several schedules repeat
at different periods (here 2, 3, and 5), with slots
allocated to specific traffic planes (resp. Applica-
tion, RPL, TSCH). Slots are skipped whenever over-
lapped by a slot in a higher priority schedule (pri-
ority increasing from top to bottom in the figure).

1. INTRODUCTION
Context. As the Internet of Things (IoT) is emerging,
there is an increasing need for low-power communication
solutions that are both flexible (i.e., are easy to use and
able to to satisfy a variety of often dynamic application re-
quirements) and robust (i.e., work reliably). Example ap-
plications range from smart homes to smart cities, includ-
ing wearable consumer devices. In these scenarios, short-
range, low-power mesh networking is envisioned as a candi-
date technology to achieve both energy-efficiency and reli-
able large-scale operation.
Challenge. Flexibility and reliability are opposing goals.
Asynchronous low-power mesh networks (including low-
power IPv6) are flexible and support non-deterministic ap-
plications, but are best-effort. State-of-the art solutions
have loss rates in the range of one percent [15, 19, 21, 11].
In the absence of end-to-end reliability, i.e., transport layer
re-transmissions, such a loss rate is too high for most ap-
plications. With end-to-end reliability, losses trigger costly
re-transmissions which often come in burst and result in
jittery performance. At the other end of the spectrum, de-
terministic networks running TDMA and scheduled traffic
can achieve 2 or 3 orders of magnitude fewer losses (i.e., up
to one loss per 10.000 packets or more) [8, 2, 37, 12, 28].
We investigate how to achieve such high level of reliability
in non-deterministic scenarios.
Approach and Distinction. In this paper, we make
a case for autonomous TSCH (Time Slotted Channel Hop-
ping [1]) scheduling in non-deterministic low-power RPL and
IPv6 networks. We show that even though it requires global
synchronization, TSCH is practical in sparse traffic scenar-
ios, and helps achieve high reliability in networks running a
distributed routing protocol such as RPL [40]. The key chal-

lenge we address is that of creating TSCH schedules without
hindering any of the flexibility of RPL networks and match-
ing the requirements of non-deterministic applications. Or-
chestra achieves this with local, autonomous scheduling, and
requires neither a centralized nor a distributed scheduler.

This is radically different from traditional TSCH
scheduling solutions such as WirelessHART [14] and
ISA100.11a [17], which rely on a centralized scheduling en-
tity. This is also different from the standards being devel-
oped in the IETF 6TiSCH working group [33], which employ
schedule negotiation between neighbor nodes.

In Orchestra, nodes employ simple periodic schedules and
update the schedules automatically and instantly as the
routing topology evolves. A TSCH schedule in Orchestra
consists of a set of over-provisioned communication slots
dedicated each to a specific communication plane: MAC,
routing and application (as illustrated in Figure 1). As a re-
sult, Orchestra allows building a generic, flexible, low-power
routing backbone using RPL while benefiting from the ro-
bustness of TSCH. Our schedules allow to reduce contention
drastically, or even eliminate it altogether in certain cases.
Results. We implement Orchestra and TSCH in Con-
tiki [10], and experiment in two testbeds with 98 and
25 nodes, each with a different hardware platform. In total,
our evaluation bases on 219 individual experiments, up to
72 hours long, and a total of 1,178,601 UDP packets routed
from source to destination. We show that Orchestra en-
ables autonomous TSCH scheduling in RPL networks, and
achieves end-to-end delivery ratios over 99.99%. This is an
improvement of 1 or 2 orders of magnitude over state-of-the-
art asynchronous solutions such as RPL with ContikiMAC.
We show that Orchestra achieves this strong reliability while
keeping energy and latency close to the state of the art.
Contribution. The main contribution of this paper is Or-
chestra, a system that allows TSCH nodes to maintain their
schedules autonomously, driven by the state of the routing
protocol. Orchestra operates without a centralized sched-
uler, and without inter-node schedule negotiation nor path
reservation. We demonstrate experimentally that Orchestra
is practical, scalable, and achieves end-to-end loss rates two
orders of magnitude below low-power listening.
Outline. The remainder of this paper is organized as fol-
lows. §2 gives necessary background on TSCH and RPL,
before introducing the basic concepts of Orchestra. §3 char-
acterizes the potential benefits of TSCH as an alternative
to asynchronous MAC layers. §4 discusses the design of Or-
chestra and §5 details implementation aspects. §6 discusses
the results of our thorough experimental evaluation in two
different testbeds as well as in controlled simulation. We
discuss related work in §7 and conclude in §8.

2. OVERVIEW
This section introduces necessary background and gives a

brief overview of our system, Orchestra.

2.1 TSCH
The IEEE802.15.4e-2012 [1] standard defines a number of

MAC protocols for IEEE802.15.4. In this paper, we focus
on TSCH (Time Slotted Channel Hopping), which inherits
from WirelessHART and ISA100.11a.

TSCH nodes form a globally synchronized low-power mesh
network. Nodes may join the network after hearing an En-
hanced Beacon (EB) from another node. Time synchroniza-

tion trickles from the PAN coordinator down to leaf nodes
along a Directed Acyclic Graph (DAG) structure. Time is
cut into timeslots; timeslots are grouped into one or more
slotframes. A timeslot, typically 10 ms long, is long enough
for a node to send a frame and for the receiver to acknowl-
edge it. A TSCH schedule indicates to a node what to do
in each timeslot: transmit, receive or sleep. A timeslot in
a slotframe is identified by its time offset (when in the slot-
frame it occurs), its channel offset (denoting the frequency
to communicate on), and a set of properties: whether it is
to be used for transmission, reception, time synchronization,
etc. Slots can be dedicated or shared, i.e., contention-free
or contention-based with CSMA back-off.

TSCH networks use channel hopping: the same slot in
the schedule translates into a different frequency at each it-
eration of the slotframe. The result is that successive pack-
ets exchanged between neighbor nodes are communicated at
different frequencies. In case a transmission fails because of
external interference or multi-path fading, its retransmission
happens on a different frequency, often with a better proba-
bility of succeeding than using the same frequency again [37].

How the communication schedule in the TSCH network is
built and maintained is out of the scope of the established
standards. The traditional way to scheduling (used in Wire-
lessHART, ISA100.11a, and one of the modes in 6TiSCH) is
to use a centralized entity which gathers information from
the network, computes a schedule centrally, and dissemi-
nates routes and schedules to the nodes. Since late 2013,
the IETF 6TiSCH working group is defining mechanisms to
support decentralized scheduling. In this approach, a node
negotiates with its neighbor to add/remove a slot to their
local schedule.

2.2 RPL
RPL [40] is the routing protocol for low-power IPv6 net-

works standardized by the IETF ROLL working group. It is
an oriented distance-vector routing protocol that organizes
nodes in a Destination-Oriented DAG (DODAG) structure.
The DODAG is rooted at the border router node (Internet
access point). Each node is attached a rank, i.e., its distance
to the root using some cost function (e.g., the ETX metric).

A node sends a packet towards the root by forwarding it
to a neighbor node with a smaller rank. Routing from the
root to one of the nodes is done by using the reverse links.
In this paper, we focus on the storing mode of RPL: each
node maintains a routing table towards its routing children,
i.e., the nodes further away from the root than itself. RPL
uses unicast and broadcast signaling messages; namely, DIO
(to disseminate the metrics), DIS (to request DODAG infor-
mation) and DAO (to disseminate routes) messages. Rout-
ing from any node to another is done by first routing up to
a common ancestor (along decreasing ranks), then down to
the destination (following the routing tables).

2.3 Orchestra in a Nutshell
This paper introduces Orchestra, a new approach to

scheduling in TSCH+RPL networks1. Orchestra is radi-
cally different from existing scheduling solutions in that it
does not involve any extra central entity, negotiation, sig-
naling, nor multi-hop path reservation among nodes. In-

1The approach developed in this paper is general enough to
be applied to other scheduled MAC layers and any routing
protocol. The focus of this paper is on TSCH and RPL.

stead, nodes maintain their own schedule locally and au-
tonomously, based on their RPL neighbors and parents. As
a result, Orchestra makes TSCH as flexible as asynchronous
MAC layers, and able to support random-access traffic.

An Orchestra schedule contains different slotframes of dif-
ferent lengths. Each slotframe is dedicated to a particu-
lar type of traffic: TSCH beacons, RPL signaling traffic or
application data. Nodes select slots using scheduling rules
which reduces contention drastically, or in certain cases elim-
inates contention (see §4.2). This makes Orchestra partic-
ularly appealing for low-power IPv6 scenarios where differ-
ent applications generate event-based data, without any pre-
defined (e.g., periodic) traffic pattern.

A concrete example Orchestra schedule contains:

- A dedicated broadcast slot from every node to its chil-
dren for TSCH beacons, repeating every X slots;

- A slot common for all nodes in the network for broad-
cast+unicast for RPL signaling (DIO, DIS, DAO), re-
peating every Y slots;

- A dedicated unicast slot from every node to its RPL
preferred parent, repeating every Z’ slots;

- N dedicated unicast slots from every node to each of
its children, repeating every Z” slots.

Orchestra uses slotframe lengths which are mutually
prime, ensuring the slots overlap each other evenly, with-
out unintended synchronization effects. The key is that we
select the time and channel offset of the every slot as a func-
tion of the sender’s or the receiver’s identifier (MAC address
or a unique network node ID). Depending on the scheduling
rules, Orchestra can either attain very low levels of con-
tention, or operate contention-free.

3. A CASE FOR TSCH IN LOW-POWER
MESH

Before moving to the detailed design of Orchestra, we dis-
cuss and characterize the potential benefits of TSCH over
asynchronous solutions.
Cost of Global Synchronization. TDMA protocols are
often regarded as impractical in random-access or sparse
traffic scenarios, because of the overhead of global synchro-
nization. In TSCH, nodes keep synchronized to one or sev-
eral time sources, re-adjusting their clock whenever receiving
a data of acknowledgment packet from it. In IEEE802.15.4,
the maximum clock drift allowed is 40 ppm (parts per mil-
lion), i.e., max 80 ppm among two nodes. Assuming a guard
time of ±1 ms (the default value in TSCH), a node needs to
re-synchronize to its time source neighbor every 12.5 s. Re-
synchronizing involves sending a short data packet, and re-
ceiving a short acknowledgment, which accounts for around
6 ms of radio on-time. Under these assumptions, resyn-
chronization results in an additional radio duty cycle of
6 ms/12.5 s = 0.048%.

In practice, this baseline cost can be pushed even lower. In
our testbeds (see §6.1) we measured an average drift between
nodes in the range of 10–20 ppm, way below the 80 ppm
assumed above. It is possible, in addition, to have nodes
characterize their drift at runtime and adjust their clock
dynamically, further reducing the cost of synchronization [4].

The numbers above show that synchronization can be ob-
tained at a very low cost, in fact insignificant when compared
to the typical duty cycle of mesh networks, in the order of

2 5 15 30 60
Packet Period (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ch
an

ne
l U

til
iz

at
io

n
(%

)

TSCH-dedicated
TSCH-minimal
ContikiMAC@64Hz
ContikiMAC@8Hz
Always-on

(a) Channel utilization

2 5 15 30 60
Packet Period (s)

0

200

400

600

800

1000

1200

1400

St
ab

le
 L

in
ks

 (#
)

(b) Total number of stable
links

Figure 2: Periodic Broadcast Probing Experiment.
ContikiMAC has much higher channel utilization
than TSCH and Always-on, resulting in fewer sta-
ble links as high traffic loads. TSCH with dedicated
slots, being completely contention-free, yields per-
formance similar to the baseline Always-on.

percent or tens of a percent [15, 19, 21, 11] (e.g., Contiki-
MAC in its default settings has a 0.6 % baseline duty cy-
cle [9]). We therefore argue that TSCH is practical even in
sparse traffic scenarios.
Scheduled vs. Asynchronous. We run an initial set
of experiments to characterize link properties when using
different MAC layers. We use the Indriya testbed [6], con-
taining 98 TelosB nodes. We implement TSCH for the Con-
tiki OS, and compare TSCH against ContikiMAC and the
Always-on MAC, where nodes listen all the time and trans-
mit using CSMA (Contiki’s Nullrdc+Csma with link-layer
ACK). The latter two are contention-based, asynchronous
MAC layers. ContikiMAC [9] is a state-of-the-art low-power
listening protocol that builds upon well established mecha-
nisms [23, 16] described next. In ContikiMAC, nodes trans-
mit their packet repeatedly for one period (e.g., 125 ms)
until the receiver wakes up and acknowledges it. Nodes
are loosely synchronized through a phase-lock mechanism,
which reduces strobe length towards already known neigh-
bors. Although Always-on is generally impractical in low-
power scenarios, we include it as a baseline approach.

In the experiment, every node transmits a broadcast
packet at a given period with added jitter, and all packet re-
ceptions are logged. We use 3 different asynchronous MAC
layers: Always-on, ContikiMAC at 8 Hz (default setting,
wakeup period of 125 ms), ContikiMAC at 64 Hz (wakeup
period of 15.6 ms). We use 2 different configurations for
TSCH: TSCH-minimal, based on the 6TiSCH minimal con-
figuration [35], where every node has a single shared com-
munication slot for any traffic (here we use a slotframe of
1 slot, i.e., all slots are active), and TSCH-dedicated where
we use the nodes’ unique node ID in the testbed to allocate
a dedicated transmission slot to every node, ruling out all
contention. For fairness with Always-on and ContikiMAC,
and to focus on scheduling rather than channel hopping, we
run TSCH on a single channel (channel 26, among the best
channels in Indriya) in this specific experiment.

Figure 2 summarizes the results of this experiment. We
look at two metrics. First, channel utilization is the average
portion of time spent by a node with its radio transmitting.
Second, the number of stable links, refers to the total num-
ber of links with PRR (Packet Reception Rate) above 90%.

ContikiMAC leads to high channel utilization with packet
strobing, i.e., up to 3% per node, which, in the 98 node
testbed, corresponds to on average 3 nodes transmitting at
any point in time. In comparison, TSCH and Always-on
nodes have a channel utilization below 0.08%, a 37× factor
improvement. This results in lower contention, and in turn
a higher number of stable links.
Channel Hopping. An essential benefit of TSCH is its
channel hopping nature. Channel hopping is known to ef-
fectively combat external interference and multi-path fad-
ing [38, 37], thereby increasing channel capacity and reduc-
ing the energy spent in packet retransmissions. Channel
hopping can achieve similar benefits in asynchronous MACs,
but at the cost of extra synchronization overhead [32, 24].

Orchestra aims at making TSCH as flexible as asyn-
chronous MACs, while enjoying reduced contention (through
scheduling) and robustness (through channel hopping).

4. Orchestra DESIGN
We introduce Orchestra, a system for routing-aware, au-

tonomous slot allocation in random-access TSCH networks.

4.1 Big Picture
In Orchestra, nodes adapt their schedule by exploiting

information from the RPL topology, and following a set of
scheduling rules. This results in periodic activity patterns,
with slotframes and slots assigned to different traffic planes
such as TSCH beacons, RPL signaling, or application data.
Network Bootstrap. When switched on, a node joins
the TSCH network by listening until it receives a Enchanced
Beacon (EB), either from the PAN coordinator or another
node. After synchronizing to that EB, the node runs Or-
chestra. A viable Orchestra setup requires slots for sending
and receiving packets to/from any neighbor. This emulates
an always-on link to all neighbors, allowing RPL nodes to
discover their neighbors and build a topology.
TSCH-RPL Topology Mapping. Orchestra consis-
tently uses the node’s RPL preferred parent as its TSCH
time source neighbor2. As the RPL topology evolves and
parent switches occur, nodes update their TSCH time source
accordingly. This yields a loop-free timing structure (a
tree in this case), taking advantage of RPL’s built-in loop
avoidance mechanism. Furthermore, we use the RPL rank
as TSCH join priority, as defined in the 6TiSCH architec-
ture [33]. Doing so, we also take advantage of the RPL
mechanisms for gradient convergence and stability. In case
a node loses synchronization, it also leaves the RPL network,
ensuring a clean slate bootstrap after re-joining.
TSCH Time Synchronization. TSCH time synchro-
nization happens on any packet (or ACK) from the time
source neighbor. In Orchestra, time synchronization hap-
pens primarily through periodic TSCH and RPL beacon
transmission. This is efficient as a single broadcast mes-
sage allows all children to update their clocks. Whenever a
node has not communicated with its time source neighbor
for a given duration (we use 12 s), it sends a unicast keep-
alive message. The packet is re-sent until acknowledged, and
re-synchronization is done by using the timing information
embedded in the IEEE802.15.4e enhanced ACK.

2Note TSCH supports multiple time sources, but in our cur-
rent design, Orchestra sticks to a single time source.

Routing-aware Scheduling. Throughout the network
lifetime, Orchestra installs and updates TSCH schedules by
using information from the routing layer. RPL runs unmod-
ified, with slots being set up automatically as the topology
evolves, ensuring network connectivity and allowing upper
layers to run transparently. A basic example is where Or-
chestra maintains a dedicated slot for parent to child com-
munication, repeating at a fixed period (e.g., 1 s), at a time
offset and channel offset selected from the parent’s unique
node ID. Whenever a child switches parent, it updates its
slot to match the new parent’s node ID.

4.2 Scheduling
Orchestra runs deployment-specific scheduling rules that

describes how to maintain TSCH slotframes and slots as a
function of the routing topology.

4.2.1 Orchestra Slots
We identify four main types of slots in Orchestra: com-

mon shared slots, receiver-based shared slots, sender-based
shared slots, and sender-based dedicated slots. Orchestra
are dynamically mapped at runtime into 0, 1, or multiple
TSCH slots. The different types of Orchestra slots are il-
lustrated in Figure 3, in a 4-node network (Figure 3a) and
showing only the slots for child-to-parent traffic.
Common Shared Orchestra Slots (CS). CS Orchestra
slots consist in one shared slot used by all nodes in the net-
work for both Rx (reception) and Tx (transmission), as illus-
trated in Figure 3b. The slot is installed at fixed coordinates
(time and channel offset), resulting in a behavior similar to
slotted ALOHA. This emulates an always-on link, allowing
RPL to discover neighbors and run seamlessly. Note that
TSCH uses an exponential back-off to resolve contention in
shared slots, triggered whenever a unicast transmission is
unacknowledged.
Receiver-based Shared Orchestra Slots (RBS). RBS
are assigned for communication between two neighbors, at
coordinates (time and channel offset) derived from proper-
ties of the receiver. At every node, a RBS Orchestra slot
results in one Rx slot (coordinates based on the node), and
one Tx slot per neighbor (coordinates based on the neigh-
bor). To calculate slot coordinates, one can use a hash of
the node’s MAC address, modulo the slotframe length, or
exploit unique node identifiers when available.

A typical example is for child-to-parent communication:
nodes listen for any traffic in one slot, and children main-
tain a transmit slot towards their parent. As nodes switch
parent, they update their transmit slot autonomously. Be-
cause several nodes may install slots towards the same re-
ceiver, contention may arise in such slots. For instance in
Figure 3c, #3 and #4 contend to send to their parent #2,
using standard TSCH back-off.
Sender-based Shared Orchestra Slots (SBS). SBS are
similar to RBS, except that the slot coordinates are obtained
from properties of the sender node rather than the receiver.
At every node, a SBS Orchestra slot results in one Rx slot
per neighbor (coordinates based on the neighbor) and a sin-
gle Tx slot (coordinates based on sender node). This results
in higher energy consumption than RBS (Tx slots cost noth-
ing when there is no traffic, whereas Rx slots always require
a wakeup), but can also help decrease contention by avoiding
per-receiver slot assignement.

(a) Topol-
ogy

#3
#2
#1

#4

Time

RxTxS RxTxS

RxTxS RxTxS

RxTxS RxTxS

RxTxS RxTxS

6 slots slotframe

(b) Common Shared Slot

#3
#2
#1

#4

Rx Rx

TxS Rx TxS Rx

TxS Rx TxS Rx

TxS Rx TxS Rx

Time

6 slots slotframe

(c) Receiver-based Shared Slot

#3
#2
#1

#4

Tx(S) Rx Tx(S) Rx

Tx(S) Rx Rx Tx(S) Rx Rx

Tx(S) Tx(S)

Tx(S) Tx(S)

Time

6 slots slotframe

(d) Sender-based (Shared) Slot

Figure 3: Illustration of the different Orchestra slot types, in a 4-node network, showing child-to-parent slots.
Slot properties are also shown: Reception (Rx), Transition (Tx), Shared (S). In common shared slots, all
nodes wakeup up simultaneously to receive or transmit in a contention-based manner. In receiver-based slots,
nodes have their own receive slot (here based on node ID), and their children contend when sending to them.
In sender-based slots, nodes have their own transmit slot, and their parent wakes up to receive from them.

For instance, for child-to-parent communication, nodes
have one fixed Tx slot, and parents maintain a Rx slot for
each of their children. Whenever switching parent, the child
does not need to update its transmit slot, but the old parent
must remove a listen slot and the new parent install a new
one. In Figure 3d, #2 has two listen slots, one for each of its
children #3 and #4. Here again, contentions are resolved
with the back-off from standard TSCH shared slots.
Sender-based Dedicated Orchestra Slots (SBD). In
a slotframe long enough to accommodate unique transmit
slots to every node, and assuming unique node identifiers
are available, contention-free communication is possible. Or-
chestra achieves contention-free communication with SBD,
which are similar to SBS except they use dedicated TSCH
slots instead of shared. Note that with TSCH dedicated
slots, lost packets are re-sent without a back-off (using the
next slot towards the same neighbor). Unique node IDs can
be hard-coded at deployment time, or obtained at runtime
from a network manager.

4.2.2 Orchestra Slotframes
Orchestra manages several slotframes at every node, each

of which is assigned to a particular traffic plane, e.g., TSCH
beaconing, routing traffic, application. Slotframes consist of
a set of slots, with properties defined by simple scheduling
rules. The slotframes repeat at periods that are mutually
prime, ensuring they cycle independently. In case slots from
different slotframes overlap, the slot in the highest priority
slotframe takes precedence3.

The length of a slotframe introduces a trade-off in traffic
capacity, network latency and energy consumption.
Traffic Capacity. Shorter slotframes have their slots re-
peat more often, resulting in higher traffic capacity. Orches-
tra’s approach is to over-provision TSCH in order to support
non-deterministic traffic, and the slotframe length is the pri-
mary way to control the amount of over-provisioning for a
given traffic plane.
Network Latency. The per-hop latency on a given traffic
plane is basically proportional to the length of the slotframe
for this particular traffic plane.

3Note that this is a slight departure from the standard
TSCH slotframe priority rules, where Tx slots take prece-
dence over other slots independent of slotframe handles.
This departure is not strictly required but makes Orches-
tra slot interaction easier to comprehend.

Energy Consumption. Similarly, the shorter the slot-
frame, the more often nodes have to wake up to listen or
transmit, resulting in higher energy baseline.

4.2.3 Scheduling Rules
Orchestra maintains its schedules using simple scheduling

rules, described in this section. Scheduling rules are a set
of TSCH slotframes and slots enhanced with a number of
Orchestra-specific properties. Some of the slotframe and slot
properties are per IEEE802.15.4e (labeled std), other include
extensions to standard properties (ext), or are introduced by
Orchestra (new).

The properties of an Orchestra slotframe S are:
Handle (std). A unique positive integer for both identifi-
cation and priority. The smaller it is, the higher the priority.
Length (ext). The number of slots in the slotframe. Must
be mutually prime with all other slotframe lengths in the
network.
Traffic Filter (new). The traffic plane the slotframe is
intended for. Filters packet properties (e.g., unicast, broad-
cast) and protocols (e.g., TSCH, RPL).

Slotframes are made of Orchestra slots, each mapped into
0, 1 or multiple TSCH slots depending on the current TSCH
and RPL state. An Orchestra slot can for instance be re-
served for communication with all TSCH time sources, RPL
children, or the current RPL preferred parent. The proper-
ties of a slot are:
Neighbors (new). The neighbor or set of neighbors the
Orchestra slot is to be instantiated for, such as the RPL
preferred parent or all RPL children. The resulting TSCH
slots are updated automatically whenever changes occur in
the TSCH or RPL state.
Coordinates (ext). The time and channel offset within
the slotframe. Can either be fixed or a variable such as a
node ID a hash of the neighbor MAC address.
Options (std). Standard TSCH options. Includes: Rx
(reception), Tx (transmission), S (shared), defining what the
slot can be used for, and if it is shared or dedicated.

Although today the Orchestra rules are statically pro-
grammed in the nodes, one could design a CoAP-based man-
agement interface to define new rules at runtime. Once the
slotframes and slots are installed, Orchestra executes TSCH
according to standard IEEE802.15.4e, except for transmit
slots. For transmit slots, in addition to matching the packet
and slot address fields, Orchestra checks the packet against
the traffic filter of the current slot’s slotframe.

0 50 100 150 200
Slotframe Length (in slots)

0.0

0.2

0.4

0.6

0.8

1.0

Co
nt

en
tio

n
Pr

ob
ab

ili
ty CS

RBS/SBS

Figure 4: Analytical contention probability for CS
slots vs. RBS and SBS slots, for 20-node clique and
a traffic load of one packet per 500 ms. RBS and SBS
do not eliminate contention but reduce it drastically.
SBD are not in the figure as they are contention-free.

4.3 Performance Analysis
This section analyzes the contention rates obtained with

different types of Orchestra slots. It then formulates guaran-
tees on the frequency of overlap among different slotframes,
and derives bounds for the nodes’ radio duty cycle.

4.3.1 Contention Rate
Orchestra slots repeat at a constant period to serve a par-

ticular traffic plane. This is a behavior equivalent to slotted
ALOHA for each traffic plane. In slotted ALOHA, the prob-
ability for any transmission to face contention is [41]:

p(contslottedALOHA) = 1− e−T (1)

Where T is the average traffic load on the slot, with traffic
following a Poisson distribution. For instance, if there is on
average one packet sent every two slot, T = 1

2
.

Let us consider a simple case with a network of N nodes,
all connected to each other (a clique). In a setup with one
slotframe of length L with a single CS slot, the load on every
slot is T × L, and the contention probability is:

p(contCS) = 1− e−TL (2)

In a case with RBS or SBS slots, the traffic is spread over
all slots in the slotframe. If the slotframe is longer than or
equal to the network size, the traffic is spread evenly across
all nodes, decreasing the traffic load by a factor N . Other-
wise, all slots are shared equally among nodes, decreasing
the traffic load by a factor of only L. As a result, the con-
tention probability is:

p(contRBS) = p(contSBS) =

{
1− e−

TL
N if L ≥ N

1− e−T otherwise.
(3)

Finally, sender-based dedicated slots (SBD) are by design
contention-free:

p(contSBD) = 0 (4)

Figure 4 shows p(contCS), p(contRBS) and p(contSBS) for
a 20-node network, with an overall traffic load of one packet
per 500 ms and 10 ms slots (T = 1

50
). In all cases, contention

increases for longer slotframe as a result of sparser slot rep-
etition. At any slotframe length, RBS and SBS decrease the
level of contention by an important factor. They are there-
fore advisable in any scenario where a common rendez-vous
slot is not required.

4.3.2 Slotframe Overlap
Every slotframe repeats with at a given period (its length

in slots). Let Bslots be the number of slots in slotframe B
of length Blen. Let collB denote the event of a given slot
colliding with any slot in B. The probability for any slot to
collide with B is:

p(collB) =
1

Blen/Bslots
(5)

When such slot collision occur, the slot from the slot-
frame with smaller handle takes precedence, all other slots
are skipped. We denote SF the set of all slotframes in the
system. The probability for A (handle denoted as Ah) to be
skipped due to a slot collision with any other slotframe is:

p(skipA) = 1−

 ∏
∀B∈SF, Bh<Ah

1− p(collA,B)

 (6)

4.3.3 Duty Cycle Bounds
Let rxMinDc be the radio duty cycle of a Rx slot when no

communication occurs, defined as rxMinDc = rxGuardTime
slotLength

where rxGuardT ime denotes the TSCH Rx guard time and
slotLength the TSCH slot duration. AdcRxBase is the listen-
ing cost of slotframe A, in the absence of communication:

AdcRxBase = (1− p(skipA))× ArxSlots × rxMinDc

Alen
(7)

Here, ArxSlots is the number of slots with Rx flag in slot-
frame A.

In the absence of data to send, a node does not switch on
its radio in transmit slots. Therefore, the lower bound duty
cycle of slotframe A is AdcLower = AdcRxBase.

Because of reception guard times, Rx slots result in a max-
imum duty cycle (denoted rxMaxDc) higher than Tx slots
(denoted txMaxDc). The upper bound duty cycle is reached
when a full-sized packet is received (resp. sent) at every Rx
slot (resp. Tx-only slot):

AdcUpper = (1− p(skipA))×
ArxSlots × rxMaxDc + AtxOnlySlots × txMaxDc

Alen

(8)

Where AtxOnlySlots is the number of slots in slotframe A
with Tx flag but not Rx flag.

The system-wide lower and upper bound duty cycle are
denoted respectively dcLower =

∑
∀A∈SF AdcLower and

dcUpper =
∑
∀A∈SF AdcUpper.

4.4 Example Orchestra Schedules
We introduce a number of example Orchestra setups used

throughout the paper for discussion and evaluation.

4.4.1 6TiSCH Minimal Schedule
A simple example is the schedule defined by the 6TiSCH

minimal configuration [35]. It consists of a single slotframe
with a single common shared (CS) slot. This configura-
tion is a very practical one, as it establishes basic connec-
tivity between every node, for any traffic type. However,
all slots are shared in the entire network, resulting in a
purely contention-based scenario. We refer to such a setup
as TSCH-min-X, where X is the length of the slotframe.

0 10 20 30 40 50 60

0
20
40
60
80No

de
 ID

EB Tx EB Rx Broadcast Tx Broadcast Rx Unicast Tx Unicast Rx

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

0
20
40
60
80No

de
 ID

Figure 5: A 60 minutes slice of Orchestra running in Indriya (top) and a zoomed view on 4 seconds (bottom).
The EB and unicast slotframes result in diagonal lines of activity as they contain a single Tx slot each, with
time offset equal to node ID. The broadcast slotframe has a single common shared slot at time offset 0,
and therefore results in vertical lines, as all nodes are listening simultaneously. All slotframes repeat with a
different periodicity. The duty cycle is 0.47%.

4.4.2 Setup with Receiver-based Unicast Slots
We describe a more advanced setup made of three slot-

frames, including one receiver-based slotframe for unicast.
We refer to such a setup as TSCH-RB-X-Y-Z, where X, Y,
Z are the length of the three slotframes S0, S1, S2.
EB Slotframe. The first slotframe (S0) is dedicated to EB
(TSCH Enhanced Beacon) transmissions, used for TSCH as-
sociation and child-parent synchronization. The slotframe is
longer than the number of nodes in the network, and consists
of one sender-based dedicated (SBD) slot. As a result, every
node has one Tx slot, and one Rx slot to listen for EBs from
its time source. All transmissions in S0 are contention-free.
We use X = 397 slots as a default length for S0.
Broadcast Slotframe. We add a slotframe (S1) with
one common shared (CS) slot for RPL broadcast messages.
As described in §4.3, S1 periodically collides with S0, as the
latter has a higher priority. We use Y = 31 slots as a default
length for S1. The probability for this slot to collide with
S0 and be skipped is:

p(skipS1) = 1−(1−p(collS0)) =
1

S0len/S0slots
≈ 0.005 (9)

Receiver-based Unicast Slotframe. We finally add a
slotframe (S2) for unicast traffic with the RPL parent and
all children, through a receiver-based shared (RBS) slot. In
this setup, every node wakes up at a time offset derived
from its own MAC address, listening for incoming traffic.
We assign time offset hash(MAC)%Z to every node, where
Z is the slotframe length. The probability for any slot in S2
to be skipped due to a collision with either of the previously
described slotframes is:

p(skipS2) = 1− (1− p(collS0))× (1− p(collS1))) ≈ 0.037
(10)

Which means that unicast transmissions to a given neighbor
will occur with a 96.3% probability, and be postponed to the
next slot otherwise.

4.4.3 Setup with Sender-based Unicast Slots
We introduce a variation of the setup above, where unicast

transmissions take place in a sender-based shared (SBS) slot.
S0 and S1 are the same as for TSCH-RB, but S2 is modified

to use SBS instead of RBS. We refer to this setup as TSCH-
SB-X-Y-Z, where X, Y, Z are the length of S0, S1, and S2.

In this setup, every sender has a transmit slot assigned in
S2, and every node listens to their RPL parent and children’s
slot. The main benefit of TSCH-SB is that it reduces con-
tention in comparison to TSCH-RB where all transmissions
to a given node take place in the same slot. The downside
is a higher energy baseline, as nodes need to wake up and
listen at each of their or parents and children’s slots. In
scenarios where all nodes have a unique ID, and where the
slotframe length Z is greater than the network size, one can
ensure contention-free transmissions, and replace the shared
Tx slot with a dedicated one.

Figure 5 shows Orchestra running with this setup with
unicast slotframe of 101 slots (TSCH-SB-101) on the In-
driya testbed’s 98 TelosB nodes (c.f., §6.1). In this specific
run, we use the testbed node IDs to define the time offsets,
resulting in cascaded transmissions. The figure shows the
periodic transmissions of EBs (orange, cascaded), broadcast
slots (green, all nodes aligned for contention-based commu-
nication) and unicast (blue, cascaded).

5. SYSTEM INTEGRATION
We discuss here a number of modifications we applied

to Contiki’s RPL implementation in order to gear it to-
wards high reliability, and we introduce our implementation
of TSCH and Orchestra.
Reliable RPL. Because we are aiming for high reliability,
and to make sure TSCH nodes always have a reachable time
source neighbor, we fine-tune RPL as follows.

First, we noticed that the ETX metric builds best-effort
rather than reliable routes. For instance, a 56% PRR
hop (ETX=1.8) is considered better than two perfect hops
(ETX=1+1=2). When reliability matters, the latter should
be clearly preferred. We use the squared ETX value as the
link’s cost in order to favor good links while preserving the
gradient nature of RPL.

Second, we have to make RPL less aggressive in switching
parents to avoid switching to a neighbor with which we do
not have good statistics yet. To this end, we implement a
simple probing mechanism: every node transmits a unicast
probe to its best or second best parent at a given interval

(we use 4 min in this paper’s experiments). This allows a
node to maintain up-to-date link estimates, ensuring that
it always has some knowledge about the link quality to its
backup (second best) parent. We also use the RSSI from
received DIOs to calculate an initial estimate of the ETX
towards the sender of this DIO.

Third, we noticed that, although RPL manages to re-
pair routing loops eventually, a number of packets is always
dropped in the process. To avoid this, we add a mechanism
where, whenever a routing loop is detected, the receiver node
transmits a unicast DIO message to the sender, thereby forc-
ing the immediate update of both nodes’ routing state.

We found that these enhancements greatly improve the
end-to-end delivery ratio, not only with TSCH and Orches-
tra but also with asynchronous MAC layers (e.g., up to
99.8% delivery with ContikiMAC+RPL data collection, the
best results we are aware of in the literature).
Implementation. We implement4 TSCH and Orchestra
for the Contiki OS. This implementation supports two plat-
forms, both evaluated in the next section: TelosB (MSP430,
10kB RAM, 48kB flash, external CC2420 radio) and NXP
JN5168 (SoC with 32-bit RISC CPU, 32kB RAM, 256kB
flash, 802.15.4 radio) [25]. In both implementations, all
TSCH operations are governed by a timer interrupt (32kHz
clock for TelosB, 16MHz for JN5168), and radio interrupts
are disabled. TSCH is entirely responsible for managing the
radio and reading out data whenever appropriate, as well as
for generating and parsing IEEE802.15.4e enhanced ACKs
and beacons. Runtime schedule modifications are done as
follows: first wait for the end of the current slot, disable
TSCH, proceed during next slot, resume TSCH operation.

TSCH (with Orchestra TSCH-min setup and queue space
for 16 packets), when compiled for TelosB, has a memory
footprint of 10kB flash and 2kB RAM. Due to the limited
memory available on the TelosB, we were unable to run RPL
with support for downwards routing in addition to TSCH,
only upwards traffic is supported. All available Contiki RPL
features are supported on the JN5168.

6. EVALUATION
In this section, we first present extensive experiments in

two different testbeds, demonstrating Orchestra’s superior-
ity against state-of-the-art asynchronous MAC layers in re-
ducing contention and achieving high reliability. Second,
we run simulations to compare against a centralized sched-
uler, where we quantify the cost in latency and energy of
our autonomous scheduling approach, and demonstrate Or-
chestra’s adaptability to varying link conditions. Table 1
summarizes our testbed evaluation results.

6.1 Setup
Simulation and Testbeds. We use three different
environments. First, we run experiments in the Indriya
testbed [6], featuring 98 TelosB nodes in a three-floor of-
fice building in Singapore. We use node #2, on the top
floor, as root of the network. An experiment in Indriya lasts
1h, repeated between 3 and 10 times. Results shown are
averages with standard deviation.

Second, to overcome the memory restrictions of the TelosB
platform, we use a testbed (JN-IoT) of 25 JN5168 nodes

4The code is available at https://github.com/simonduq/
orchestra.

Testbed Traffic Protocol PDR [%] (loss rate)

Indriya
Nodes: TelosB
Size: 98 nodes
∅ hops: 4.2
∅ density: 16

Upwards
60s interval

Always-on 99.91 (1 / 1139)
ContikiMAC-64 99.8 (1 / 482)
ContikiMAC-8 99.0 (1 / 98)
TSCH-min-3 99.87 (1 / 779)
TSCH-min-5 99.2 (1 / 127)
TSCH-RB-7 99.996 (1 / 27,044)
TSCH-SB-7 99.996 (1 / 25,450)
TSCH-SB-47 99.997 (1 / 35,700)

JN-IoT
Nodes: JN5168
Size: 25 nodes

∅ hops: 3
∅ density: 13

Upwards
30s interval

Always-on 99.97 (1 / 2893)
TSCH-min-5 99.86 (1 / 715)
TSCH-SB-29 99.991 (1 / 11,160)

Down-up
50s interval

Always-on 99.92 (1 / 1152)
TSCH-min-5 99.85 (1 / 674)
TSCH-SB-29 99.98 (1 / 5607)

Table 1: Testbed experiments summary. Orchestra
TSCH-RB and TSCH-SB consistently achieve the
lowest loss rates, outperforming the low-power al-
ternative ContikiMAC by two orders of magnitude.
Through contention avoidance and channel hopping,
Orchestra also beats the Always-on MAC, with 4 to
35 times fewer losses.

deployed in an office building. We use node #1, in a corner,
as root. Results on the JN-IoT testbed are from a single
experiment for each configuration, each experiment lasting
between 16h and 72h. The results we report are gathered
through a total of 219 testbed experiments and we routed
1,178,601 UDP packets from source to destination.

Third, to compare Orchestra against static scheduling
with full control on the network conditions, we use Cooja,
Contiki’s network simulator. Cooja emulates TelosB nodes
running compiled MSP430 firmware. Cooja allows us to
have full control over network conditions and emulates vary-
ing connectivity in a repeatable manner.
Protocols. We use Orchestra with all three configurations
from §4.4. We compare Orchestra against a centralized,
static scheduler (described in §6.6) and the asynchronous
MAC layers Always-on and ContikiMAC at 8Hz and 64Hz
(c.f., §3). All protocols use a maximum of 8 retransmissions
per hop, and a maximum of 16 packets in the queue. As for
the TSCH slot timing, on TelosB, we use 15 ms slots and
a guard time of ±0.6 ms. On JN5168, we use 10 ms slots
and a ±0.25 ms guard time. Finally, we run Always-on and
ContikiMAC over the best channel available, 26, and TSCH
over the four best channels: 15, 20, 25, 26.
Application Scenarios. We run two different applica-
tion scenarios: upwards routing and down-up routing. In
upwards, nodes transmit a packet to the network root at a
given average interval, with added jitter to emulate non-
deterministic traffic. This is done with RPL downwards
routing disabled. In down-up, the network root picks a node
in the network at random and transmits a request to it.
The destination answers immediately by sending a response
back. This is a classic traffic pattern in IoT scenarios, e.g., in
RESTful architectures with CoAP. In all cases but central-
ized scheduling, nodes run RPL, 6LoWPAN, and all appli-
cation traffic is raw UDP with a 16 bytes payload. The first
15 minutes of every run are always excluded, to allow the
network to form and RPL to converge to a stable topology.
Metrics. The three main metrics we focus on are the end-
to-end packet delivery ratio (PDR), end-to-end latency, and
radio duty cycle. The PDR is the portion of packets sent
at the application layer which make it to their final desti-
nation, possibly over multiple hops. The end-to-end latency

Alw
ay

s-o
n

Con
tik

iM
AC-64

Con
tik

iM
AC-8

TS
CH-m

in-
3

TS
CH-m

in-
5

TS
CH-RB-7

TS
CH-SB

-7

TS
CH-SB

-47
98.6
98.8
99.0
99.2
99.4
99.6
99.8

100.0
En

d-
to

-e
nd

 P
DR

 (%
)

(a) (End-to-end) PDR

Alw
ay

s-o
n

Con
tik

iM
AC-64

Con
tik

iM
AC-8

TS
CH-m

in-
3

TS
CH-m

in-
5

TS
CH-RB-7

TS
CH-SB

-7

TS
CH-SB

-47
75

80

85

90

95

100

Li
nk

 P
RR

 (%
)

(b) Unicast PRR

Alw
ay

s-o
n

Con
tik

iM
AC-64

Con
tik

iM
AC-8

TS
CH-m

in-
3

TS
CH-m

in-
5

TS
CH-RB-7

TS
CH-SB

-7

TS
CH-SB

-47
0

1

2

3

4

5

6

Du
ty

 C
yc

le
 (%

)

100

(c) Duty Cycle

Alw
ay

s-o
n

Con
tik

iM
AC-64

Con
tik

iM
AC-8

TS
CH-m

in-
3

TS
CH-m

in-
5

TS
CH-RB-7

TS
CH-SB

-7

TS
CH-SB

-47
0.0

0.5

1.0

1.5

2.0

2.5

La
te

nc
y

(s
)

(d) Latency

Figure 6: Upwards Experiments in Indriya. Orchestra results in the highest delivery ratios, here between
99.996% and 99.997%. This is partly explained by higher link PRR, reaching as high as 97%, in comparison
with ContikiMAC’s 94% (twice as many losses in the latter case). ContikiMAC, however, offers the best
latency-energy balance. Note that the y-axis of the PDR and PRR plots does not begin a zero.

is measured between the initial application’s intention to
send a packet and its reception at the final destination. The
duty cycle is the portion of time spent with the radio on
(either transmitting, listening or receiving), and is used as
a platform-independent measure of energy consumption. In
addition, we look at the link packet reception rate (PRR),
which the per-hop, per-transmission attempt success rate.

6.2 Comparison with Asynchronous MACs
We run Orchestra, Always-on and ContikiMAC in Indriya,

with upwards traffic generated at every node at an average
60 s interval. Figure 6 summarizes our results.

All Orchestra configurations achieve the highest PDRs,
above 99.99%, i.e., less than one end-to-end loss per 10k
packets or 10−4 loss rate. The best asynchronous results are
with Always-on, reaching a PDR of 99.9% i.e., a loss rate
of 10−3, one order of magnitude behind Orchestra. Contiki-
MAC is an other order of magnitude below, with 99% or a
loss rate of 10−2.

Figure 6b shows the MAC success rate, i.e., the link qual-
ity achieved by each protocol. For all protocols, there is a
clear correlation between link quality and end-to-end PDR,
which means the overall performance is mostly limited by
medium access (rather than routing or queue drops). Or-
chestra achieves the highest MAC success rates, e.g., 97%
with TSCH-SB-47 against 93% for Always-on. We attribute
this mostly to Orchestra’s ability to reduce contentions.
TSCH-min, which is fully contention-based, results in the
lowest success rates.

ContikiMAC obtains a loss rate which is two orders of
magnitude above Orchestra, but achieves the best latency-
energy balance. For instance, ContikiMAC@8Hz yields a
0.5s latency for duty cycle of 0.8%, while TSCH-SB-7 has a
duty cycle of 1.4% for the same latency. Always-on results
by design in 100% duty cycle, and also achieves the lowest
latency results, as nodes never have to wait for their neighbor
to wake up before sending.

6.3 Contention Control and Scalability
One of the main goals of Orchestra is to reduce contention

through scheduling, in order to increase link success rate and
overall reliability. A limitation, however, is that Orchestra
achieves this by having slotframes with a fixed size, and

3 7 17 29 47 47+53
Unicast Slotframe Len (slots)

0

5

10

15

20

25

Co
nt

en
tio

n
Ra

te
 (%

)

TSCH-SB
TSCH-RB

(a) Contention Rate

3 7 17 29 47 47+53
Unicast Slotframe Len (slots)

75

80

85

90

95

100

Li
nk

 P
RR

 (%
)

(b) Unicast PRR

Figure 7: With TSCH-SB, longer slotframes trans-
late to more available timeslots and less contention.
With 47+53 slots, the network is contention-free.
Lower values result in a contention rate below 3%.
TSCH-RB suffers from longer slotframes, due to in-
creased pressure on the nodes’ Rx slots. Note that
the y-axis of the PRR plot does not begin a zero.

spreading out nodes across all slots in the slotframe. This
might cause network capacity and scalability issues. We
investigate this by varying the unicast slotframe length in
TSCH-RB and TSCH-SB. We argue that varying the slot-
frame for a fixed number of nodes (Indriya’s 98 nodes) pro-
duces an effect similar to increasing traffic load or network
size for a fixed slotframe; this allows us to get insights on
Orchestra’s network capacity and scalability.

Figure 7 shows our results with TSCH-RB-3 to TSCH-
RB-47 and TSCH-SB-3 to TSCH-SB-47 (receiver-based and
sender-based shared slots). We also introduce an extra case,
TSCH-RB-47+53 and TSCH-SB-47+53, where two unicast
slotframes are used, with size 47 and 53. This increases
the number of different unicast slots to 100, more than the
network size. In this particular case, we use the nodes’
unique ID to allocate a unique slot to each. TSCH-SB-
47+53 is therefore guaranteed to be fully contention-free
(sender-based dedicated slots).

Figure 7a shows that, as predicted by our analytical model
in §4.3.1, the contention rate for TSCH-RB increases at
larger slotframes. TSCH-SB shows much lower contention
rates, and with the opposite trend: it performs at its best
with longer slotframes to eventually reach no contention at

0.0 0.2 0.4 0.6 0.8 1.0
CDF

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Du

ty
 C

yc
le

 (%
)

ContikiMAC@8Hz
TSCH-min-7
TSCH-RB-29
TSCH-SB-29

Figure 8: Orchestra’s sender-based schedules
(TSCH-SB) have the drawback of producing less
evenly distributed duty cycles among nodes, com-
pared to ContikiMAC, TSCH-min, or TSCH-RB.

all in the 47+53 case. With slotframes of length 3 to 29, con-
tentions remain roughly constant, in the 2–3% range. Such
low contention rates result in high link PRR, above 95%
in most cases (Figure 7b). We attribute TSCH-SB’s supe-
riority in here in handling contention to its sender-based
nature. Receiver-based slots are more likely to cause con-
tention, where all transmissions to a given node take place
in the same slot. This is not captured by our analytical
model from §4.3.1, which considers clique networks only (in
a clique, transmissions from/to any node may collide).

6.4 Energy Distribution and Bounds
Figure 8 shows how different Orchestra configurations af-

fect the distribution of radio duty cycle among nodes. For
each configuration, we pick parameters leading to compara-
ble duty cycles, i.e., with all nodes between 0.3% and 3%.
A first observation is that TSCH-SB results in less evenly-
balanced radio duty cycles than TSCH-RB. This can be at-
tributed to the varying number of unicast Rx slots in this
upwards traffic scenario. TSCH-SB requires one such slot
for every child, whereas in TSCH-RB nodes have a single
unicast Rx slot.

Table 2 shows the minimum and maxium per-node radio
duty cycle, as measured during all experiments, against the
theoretical bounds defined in §4.3. For all configurations, in-
cluding ContikiMAC, we find the theoretical lower bounds
to be accurate. Deriving accurate upper bounds proves more
difficult. For ContikiMAC, which is asynchronous, the up-
per bound is the case where a node transmits broadcasts
continuously, which can lead to a duty cycle as high as 88%.
With TSCH-SB-29 we also get a very high maximum value of
31%, which corresponds to the case where a node uses all of
its 29 unicast slots for listening to its children. TSCH-min-7
and TSCH-RB-29, due to their more predictable schedules,
allow us to derive more realistic and usable upper bounds,
both under 1.75× the maximum measured.

To summarize, in scenarios where energy consumption
must be bounded, Orchestra can produce schedules that
guarantee no node will have its radio turned on more than
e.g., 3% of the time.

6.5 Orchestra in IoT Scenarios
We now move to the JN-IoT testbed, and run both up-

wards and down-up traffic experiments. Because Contiki-
MAC is not ported to the JN5168 platform, we only run
Always-on and TSCH. We use the TSCH-min-5 and TSCH-

Duty Cycle (%)
Experiments Theoretical
Min Max Min Max

Contikmac@8Hz 0.66 1.89 0.6 88
TSCH-min-7 1.30 2.56 1.14 4.48
TSCH-RB-29 0.68 1.90 0.54 3.00
TSCH-SB-29 0.38 2.75 0.28 31.19

Table 2: Measured and theoretical min and max
duty cycle. Lower bounds are predicted accurately
in all cases, but upper bounds with ContikiMAC or
TSCH-SB are very pessimistic.

0 5 10 15 20 25
Node Index

0

20

40

60

80

100

Li
nk

 P
RR

 (%
)

Upwards Links Downwards Links

Figure 9: Down-up experiment in the JN-IoT
testbed: per-node link PRR. All links are usable
both ways, albeit not perfectly symmetric.

SB-29 configurations. In the latter, as we have a unicast
slotframe of size greater than the network size, we use the
node’s unique ID to derive contention-free slots. The results
are shown in Table 1.

In general, the PDRs in JN-IoT are lower than in Indriya.
This is due to differences in physical topologies and deploy-
ment sites. In particular, we noticed significant fluctuations
in link quality during workdays when compared to nights,
to an extent much greater than in Indriya.

In both upwards and down-up experiments, TSCH-SB-29
achieves the highest PDRs: about 4× fewer losses than with
the Always-on MAC and 10× fewer than TSCH-min-5. For
all three configurations (Always-on, TSCH-min-5, TSCH-
SB-29), the results when involving downwards routing are
worse than in the upwards scenario. We attribute this to
inherent properties of RPL rather than TSCH or Orchestra.

In RPL, the topology is optimized towards the root, and
downward traffic is merely enabled by reusing links in the
reverse direction, with no guarantee on link quality. Figure 9
shows, for every node, the average link PRR when routing up
(from the node) or down (towards the node). Although links
are mostly symmetric, there are a few notable exceptions,
such as node 20 with an average PRR of 86% up, 71% down.
In the TSCH-SB-29 experiment, out of 258k packets sent
in 72h, 46 were lost, 35 of them while going downwards,
11 while going upwards. Half of the downwards losses are
attributed to link losses (in part due to link asymmetry),
others are due to temporary RPL inconsistencies (loops or
outdated routes following topology updates).

Overall, this series of experiment in the JN-IoT testbed
demonstrates that Orchestra can run reliably on different
hardware platforms and networks, as well as with more chal-
lenging traffic patterns.

Figure 10: Orchestra compared to a simple static
schedule. From minute 30 onward, we inject link
failures on three random nodes every 15 minutes.
Orchestra quickly adapts to these changes while the
static schedule suffers despite retransmission slots.
Note that the y-axis of the node count and the PDR
plots does not begin a zero.

6.6 Comparison with Static Scheduling
The goal of this section is to evaluate the overhead of

using Orchestra with RPL when compared to a centralized,
static scheduler, and at the same time show the flexibility
of Orchestra with RPL in reacting to network dynamics.

As a benchmark, we implement a simple offline scheduler
inspired by the work of Pöttner et al. [28]. The scheduler
takes PRR measurements for every link as input, computes
their routing metric – it uses squared ETX, as in Orches-
tra, to favor good links – and uses Dijkstra to compute the
shortest path from each node to the sink. Routes are built
to support data-collection traffic only, at a pre-defined in-
terval (30 s in our experiments). For each route, we com-
pute a static TSCH schedule of transmissions throughout
the network. Routes are scheduled redundantly to allow for
retransmissions. Note that this is a simple scheduler, with
no runtime re-configuration nor multi-path transmissions.

For this particular evaluation, we utilize Cooja/MSPSim
simulations in order to fully control the conditions of the ex-
periments. We configure the wireless links in the model to
reflect the links quality we measured in the JN-IoT testbed.
It should be noted, however, that this wireless link model in
Cooja exhibits uniformly distributed losses which are not re-
alistic in bursty low-power networks. Nonetheless, we argue
that it is sufficient for this particular experiment.

In order to simulate network dynamics, we tune down
the reception probability of three randomly chosen nodes
to 0.1× their initial PRR i.e., the affected nodes can still
transmit as before, but are 10× more likely to drop incom-
ing data packets. We repeat this every 15 minutes, choosing
another three nodes without recovering the previously at-
tenuated nodes. This is done exactly in the same order for
the different experimental setups. We run the experiments
for 75 minutes in Cooja, and start introducing failures only
after 30 min to demonstrate a baseline of stable conditions.

We compare the static schedule (denoted as Static) to the
following three configurations of Orchestra: TSCH-min-3,
TSCH-RB-7, TSCH-SB-7. Figure 10 shows the results for
each setup. First of all, when the network is stable (until
minute 30), we notice the extremely low cost of Static. Com-
pared to Orchestra, Static yields a 4 to 8× lower duty cycle
(TSCH-SB-7 and TSCH-Min-3) and 10× lower latency. We
attribute these to the schedules and routes in Static, which
are (1) dimensioned to the traffic load (2) optimized to min-
imize latency along the network shortest path (3) and built
offline involving no neighbor discovery and routing protocol
at runtime. In terms of end-to-end PDR, both solutions per-
form exceptionally well, with the exception that Orchestra
needs a little bit of startup time (about 5 minutes in this par-
ticular setup) to find good links and stabilize, while Static
comes pre-configured with the best links and schedules.

Second, we examine the results after injecting network
reception failures (minute 30 and onward): Static directly
decreases in terms of performance, because it does not adjust
to topology changes. With Orchestra, however, the PDR
drops temporarily each 15 minutes and then RPL quickly
finds new routes and recovers.

Overall, Orchestra reacts quickly to changes in network
connectivity, but compared to a schedule built centrally for
a specific topology and traffic pattern, it has a significant
overhead in both latency and energy.

7. RELATED WORK
We review related work in three categories: (1) scheduled

MAC and routing, (2) asynchronous, low-power routing and
(3) synchronous transmissions.
Scheduled MAC and Routing. The idea of synchroniz-
ing nodes and channel hopping to combat multi-path fading
and external interference is established in many technologies,
including Bluetooth and cellular systems. It was brought to
low-power wireless networking through a proprietary proto-
col called Time Synchronized Mesh Protocol (TSMP). Early
promising results [8] pushed the core technology of TSMP
to be standardized as WirelessHART [14], ISA100.11a [17]
and IEEE802.15.4e [1].

In a WirelessHART network, a central entity computes
the communication schedule based on application require-
ments and on information it gathers about network connec-
tivity. The schedule is injected into the network and continu-
ously updated throughout the lifetime of the network [18]. In

static networks with predictable traffic patterns, commercial
TSCH-like networks such as WirelessHART or SmartMesh
IP [36] offer very high reliability (published results include
99.999% on a 49 node industrial deployment [8], 99.95%
on a 15-node testbed [28]), and a decade of battery life-
time [39]. Note that the centralized scheduling algorithms
are not part of the standards and much attention has been
given to scheduling theory in the context of TSCH networks
[27, 30, 31, 44].

In scenarios where the network topology and traffic pat-
terns are not fixed, decentralized scheduling is applicable.
Tinka et al. [34] present, to the best of our knowledge,
the first paper to propose and demonstrate a decentralized
scheduling solution for TSCH networks. A common shared
slot is used for neighbor discovery and for negotiating the
addition of dedicated slots. This work motivated further ap-
proaches [26, 43, 22]. For example, Morell et al. [22] take
schedule negotiation one step further and propose multi-hop
reservation through label switching. Focusing on very low
data-rates and not limiting itself to TSCH, Dozer [2] employs
distributing scheduling for energy-efficient routing. Its goal
of high energy efficiency leads to significantly higher latency
when compared to Orchestra. For example, experiments re-
port an average latency of 30 s and a PDR of 98.5% at a
radio duty-cycle of 0.2% for a testbed of 90 nodes [12]. To
the best of our knowledge, Orchestra is the first distributed
solution which does not require negotiation between nodes.

In October 2013, the IETF created the 6TiSCH working
group, which standardizes how to use an IPv6-enabled up-
per stack on top of IEEE802.15.4e TSCH. 6TiSCH specifies a
number of mechanisms to manage the TSCH schedule [33].
It defines a CoAP-based management protocol which can
be used for central scheduling, and a protocol for neighbor
nodes to negotiate distributed scheduling. 6TiSCH, how-
ever, leaves it to the implementer to decide which scheduling
approaches fit best. Orchestra could be considered a third
scheduling option for 6TiSCH networks.
Asynchronous, Low-power Routing. At the other end
of the spectrum, asynchronous, low-power routing enables
dynamic applications and transparently allows nodes to join
and leave. However, its packet loss can be up to several per-
cent: For example, CTP reports delivery ratios between 94%
and 99.9% in data collection depending on the network size
and topology [15]. Recent approaches such as ORW [21],
ORPL [11] and BFC [29] improve in terms of energy effi-
ciency and – in part – latency over CTP but still have an av-
erage PDR of roughly 99%. Moreover, these do not employ
scheduling and channel hopping; thus, they cannot avoid
external interference, multi-path fading, or contention as ef-
ficiently as Orchestra. EM-MAC [32] and MiCMAC [24] in-
tegrate channel hopping into asynchronous, low-power rout-
ing. As a result, they increase reliability, especially in the
presence of external interference, but channel hopping with
the loosely synchronized operation leads to an extra over-
head in terms of latency and radio duty-cycle [24].
Synchronous Transmissions. A recent direction in
low-power wireless networks is synchronous transmissions:
Glossy [13] provides fast and efficient network flooding by
precisely timing transmissions: it ensures that a receiver suc-
cessfully receives even in the presence of multiple, concurrent
transmissions – of the same packet – by exploiting construc-
tive interference and capture effect. LWB [12] provides data
collection and dissemination primitives on top of Glossy. In

LWB, a central scheduler dynamically injects collection and
dissemination schedules based on the traffic requests of the
individual nodes. Chaos [20] combines synchronous trans-
mission and in-network processing to provide fast, reliable,
and energy efficient data collection and processing. Others
show fast data dissemination [7, 5] and point-to-point rout-
ing [3, 42] based on synchronous transmissions. Approaches
based on synchronous transmissions report very high reli-
ability, low latency, and energy efficiency. For example,
Glossy reports a reliability of more than 99.99%. However,
synchronous transmissions always need one central entity to
control and initiate the synchronous transmissions. More-
over, they – inherently – have a high channel utilization and
are often limited in terms of generality such as being re-
stricted to periodic traffic. Orchestra, in contrast, provides
general purpose routing with RPL and IPv6.
Summary. Orchestra differs from previous TSCH schedul-
ing approaches in that nodes compute their own schedule lo-
cally and autonomously, based on routing-layer information.
Thus, it does not require any central entity nor communi-
cation among nodes to reserve schedules and paths. This
makes it as flexible and application-independent as non-
scheduled asynchronous solutions. Orchestra is significantly
more reliable – by two orders of magnitude in our experi-
ments – than state-of-the-art asynchronous low-power rout-
ing while achieving a similar latency-energy balance. Com-
pared to synchronous transmissions, Orchestra has the ad-
vantage to support random-access traffic, which makes it
suitable for non-deterministic low-power IPv6 applications.

8. CONCLUSION
This paper introduces Orchestra, a solution for au-

tonomous scheduling of TSCH in RPL networks. Orchestra
runs without any central scheduling entity nor negotiation,
and supports low-power random-access traffic. The key idea
is to provision a set of slots for different traffic planes, and to
define the slots in such a way that they can be automatically
installed/removed as the RPL topology evolves.

We implement Orchestra in Contiki and conduct an exten-
sive evaluation in simulation and on two different testbeds.
We demonstrate the practicality of Orchestra and its abil-
ity to consistently achieve the highest delivery ratio, while
striking an interesting latency-energy balance.

As part of future work, we plan to investigate how to
optimize time synchronization, reduce energy consumption
further, and explore management solutions for 6TiSCH to
enable runtime reconfiguration of Orchestra.

Acknowledgments
We would like to thank the CIR Lab in Singapore for pro-
viding the Indriya testbed, and Amy L. Murphy, our shep-
herd, for her insightful comments. This work was partly sup-
ported by the distributed environment Ecare@Home funded
by the Swedish Knowledge Foundation 2015-2019, the EIT
Digital RICH Activity, and VINNOVA (Sweden’s Innova-
tion Agency).

9. REFERENCES
[1] 802.15.4e Task Group. 802.15.4e-2012: IEEE Standard

for Local and metropolitan area networks–Part 15.4:
Low-Rate Wireless Personal Area Networks

(LR-WPANs) Amendment 1: MAC sublayer, 16 April
2012.

[2] N. Burri, P. V. Rickenbach, and R. Wattenhofer.
Dozer: Ultra-Low Power Data Gathering in Sensor
Networks. In Proceedings of the Conference on
Information Processing in Sensor Networks
(ACM/IEEE IPSN), 2007.

[3] D. Carlson, M. Chang, A. Terzis, Y. Chen, and
O. Gnawali. Forwarder selection in multi-transmitter
networks. In Proceedings of the Conference Distributed
Computing in Sensor Systems (DCOSS), 2013.

[4] T. Chang, T. Watteyne, K. Pister, and Q. Wang.
Adaptive synchronization in multi-hop tsch networks.
Comput. Netw., 76(C):165–176, Jan. 2015.

[5] M. Doddavenkatappa and M. C. Chan. P3: A practical
packet pipeline using synchronous transmissions for
wireless sensor networks. In Proceedings of the
Conference on Information Processing in Sensor
Networks (ACM/IEEE IPSN), 2014.

[6] M. Doddavenkatappa, M. C. Chan, and A. Ananda.
Indriya: A Low-Cost, 3D Wireless Sensor Network
Testbed. In Proceedings of the Conference on Testbeds
and Research Infrastructures for the Development of
Networks & Communities (TridentCom), 2011.

[7] M. Doddavenkatappa, M. C. Chan, and B. Leong.
Splash: Fast data dissemination with constructive
interference in wireless sensor networks. In Proceedings
of the Symposium on Networked Systems Design &
Implementation (USENIX NSDI), 2013.

[8] L. Doherty, W. Lindsay, and J. Simon.
Channel-Specific Wireless Sensor Network Path Data.
In Proceedings of the 16th International Conference on
Computer Communications and Networks (ICCCN),
pages 89–94, Turtle Bay Resort, Honolulu, Hawaii,
USA, 13-16 August 2007. IEEE.

[9] A. Dunkels. The ContikiMAC Radio Duty Cycling
Protocol. Technical Report T2011:13, Swedish
Institute of Computer Science, 2011.

[10] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - A
Lightweight and Flexible Operating System for Tiny
Networked Sensors. In Proceedings of the Conference
on Local Computer Networks (IEEE LCN), 2004.

[11] S. Duquennoy, O. Landsiedel, and T. Voigt. Let the
Tree Bloom: Scalable Opportunistic Routing with
ORPL. In Proceedings of the International Conference
on Embedded Networked Sensor Systems (ACM
SenSys 2013), Rome, Italy, Nov. 2013.

[12] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele.
Low-Power Wireless Bus. In Proceedings of the
Conference on Embedded Networked Sensor Systems
(ACM SenSys), 2012.

[13] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh.
Efficient Network Flooding and Time Synchronization
with Glossy. In Proceedings of the Conference on
Information Processing in Sensor Networks
(ACM/IEEE IPSN), 2011.

[14] H. C. Foundation. WirelessHART Specification 75:
TDMA Data-Link Layer, 2008. HCF SPEC-75.

[15] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and
P. Levis. Collection Tree Protocol. In Proceedings of
the Conference on Embedded Networked Sensor
Systems (ACM SenSys), 2009.

[16] J. W. Hui and D. E. Culler. Ip is dead, long live ip for
wireless sensor networks. In Proceedings of the
Conference on Embedded Networked Sensor Systems
(ACM SenSys), 2008.

[17] ISA. ISA-100.11a-2011 – Wireless Systems for
Industrial Automation: Process Control and Related
Applications, 2011.

[18] A. N. Kim, F. Hekland, S. Petersen, and P. Doyle.
When HART goes wireless: Understanding and
implementing the WirelessHART standard. In ETFA,
pages 899–907. IEEE, 2008.

[19] J. Ko, J. Eriksson, N. Tsiftes, S. Dawson-Haggerty,
J.-P. Vasseur, M. Durvy, A. Terzis, A. Dunkels, and
D. Culler. Industry: Beyond Interoperability: Pushing
the Performance of Sensor Network IP Stacks. In
Proceedings of the 9th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’11, pages 1–11,
New York, NY, USA, 2011. ACM.

[20] O. Landsiedel, F. Ferrari, and M. Zimmerling. Chaos:
Versatile and Efficient All-to-All Data Sharing and
In-Network Processing at Scale. In Proceedings of the
Conference on Embedded Networked Sensor Systems
(ACM SenSys), 2013.

[21] O. Landsiedel, E. Ghadimi, S. Duquennoy, and
M. Johansson. Low Power, Low Delay: Opportunistic
Routing meets Duty Cycling. In Proceedings of the
Conference on Information Processing in Sensor
Networks (ACM/IEEE IPSN), 2012.

[22] A. Morell, X. Vilajosana, J. L. Vicario, and
T. Watteyne. Label switching over IEEE802.15.4e
networks. Transactions on Emerging
Telecommunications Technologies, 24(5):458–475, Aug.
2013.

[23] D. Moss and P. Levis. BoX-MACs: Exploiting
Physical and Link Layer Boundaries in Low-Power
Networking. Technical Report SING-08-00, Stanford,
2008.

[24] B. A. Nahas, S. Duquennoy, V. Iyer, and T. Voigt.
Low-Power Listening Goes Multi-Channel. In
Proceedings of the International Conference on
Distributed Computing in Sensor Systems (IEEE
DCOSS 2014), Marina Del Rey, CA, USA, May 2014.

[25] NXP Laboratories UK Ltd. Data Sheet: JN516x
IEEE802.15.4 Wireless Microcontroller, 2013.

[26] M. R. Palattella, N. Accettura, M. Dohler, L. A.
Grieco, and G. Boggia. Traffic Aware Scheduling
Algorithm for reliable low-power multi-hop IEEE
802.15.4e networks. In PIMRC, pages 327–332. IEEE,
2012.

[27] M. R. Palattella, N. Accettura, L. A. Grieco,
G. Boggia, M. Dohler, and T. Engel. On Optimal
Scheduling in Duty-Cycled Industrial IoT Applications
using IEEE802.15.4e TSCH. IEEE Sensors Journal,
13(10):3655 – 3666, Oct. 2013.
doi:10.1109/JSEN.2013.2266417.

[28] W.-B. Pöttner, H. Seidel, J. Brown, U. Roedig, and
L. Wolf. Constructing Schedules for Time-Critical
Data Delivery in Wireless Sensor Networks. ACM
Trans. Sen. Netw., 10(3):44:1–44:31, May 2014.

[29] D. Puccinelli, S. Giordano, M. Zuniga, and P. J.
Marrón. Broadcast-free collection protocol. In
Proceedings of the 10th ACM Conference on Embedded

Network Sensor Systems, SenSys ’12, pages 29–42,
New York, NY, USA, 2012. ACM.

[30] A. Saifullah, P. B. Tiwari, B. Li, C. Lu, and Y. Chen.
Accounting for Failures in Delay Analysis for
WirelessHART Networks, 2012.

[31] A. Saifullah, Y. Xu, C. Lu, and Y. Chen. Real-Time
Scheduling for WirelessHART Networks. In Real-Time
Systems Symposium (RTSS), 2010 IEEE 31st, pages
150–159, Nov 2010.

[32] L. Tang, Y. Sun, O. Gurewitz, and D. B. Johnson.
Em-mac: A dynamic multichannel energy-efficient mac
protocol for wireless sensor networks. In Proceedings of
the Twelfth ACM International Symposium on Mobile
Ad Hoc Networking and Computing, MobiHoc ’11,
pages 23:1–23:11, New York, NY, USA, 2011. ACM.

[33] X. Thubert (Ed.), T. Watteyne, R. Struik, and
M. Richardson. An Architecture for IPv6 over the
TSCH mode of IEEE 802.15.4e -
draft-ietf-6tisch-architecture-06, Mar. 2015. IETF
Draft.

[34] A. Tinka, T. Watteyne, K. S. J. Pister, and A. M.
Bayen. A Decentralized Scheduling Algorithm for
Time Synchronized Channel Hopping. EAI Endorsed
Transactions on Mobile Communications and
Applications, 11(1), 9 2011.

[35] X. Vilajosana (Ed.) and K. Pister. Minimal 6TiSCH
Configuration - draft-ietf-6tisch-minimal-06, Mar.
2015. IETF Draft.

[36] T. Watteyne, L. Doherty, J. Simon, and K. Pister.
Technical Overview of SmartMesh IP. In Proceedings
of the 2013 Seventh International Conference on
Innovative Mobile and Internet Services in Ubiquitous
Computing, IMIS ’13, pages 547–551, Washington,
DC, USA, 2013. IEEE Computer Society.

[37] T. Watteyne, S. Lanzisera, A. Mehta, and K. Pister.
Mitigating Multipath Fading through Channel
Hopping in Wireless Sensor Networks. In

Communications (ICC), 2010 IEEE International
Conference on, pages 1–5, May 2010.

[38] T. Watteyne, A. Mehta, and K. Pister. Reliability
Through Frequency Diversity: Why Channel Hopping
Makes Sense. In Proceedings of the 6th ACM
Symposium on Performance Evaluation of Wireless Ad
Hoc, Sensor, and Ubiquitous Networks, PE-WASUN
’09, pages 116–123, New York, NY, USA, 2009. ACM.

[39] T. Watteyne, J. Weiss, L. Doherty, and J. Simon.
Industrial IEEE802.15.4e Networks: Performance and
Trade-offs. In Proceedings of IEEE International
Conference on Communications (ICC), Internet of
Things Symposium, London, UK, June 2015.

[40] T. Winter (Ed.), P. Thubert (Ed.), and RPL Author
Team. RPL: IPv6 Routing Protocol for Low power
and Lossy Networks, Mar. 2012. RFC 6550.

[41] Y.-C.Jenq. On the stability of slotted aloha systems.
Communications, IEEE Transactions on,
28(11):1936–1939, Nov 1980.

[42] D. Yuan, M. Riecker, and M. Hollick. Making ‘Glossy’
Networks Sparkle: Exploiting Concurrent
Transmissions for Energy Efficient, Reliable,
Ultra-Low Latency Communication in Wireless
Control Networks. In Proceedings of the European
Conference on Wireless Sensor Networks (EWSN),
2014.

[43] P. Zand, A. Dilo, and P. Havinga. D-MSR: A
Distributed Network Management Scheme for
Real-Time Monitoring and Process Control
Applications in Wireless Industrial Automation.
Sensors, 13(7):8239–8284, 2013.

[44] H. Zhang, P. Soldati, and M. Johansson. Optimal Link
Scheduling and Channel Assignment for Convergecast
in Linear wirelessHART Networks. In Proceedings of
the 7th International Conference on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless
Networks, WiOPT’09, pages 82–89, Piscataway, NJ,
USA, 2009. IEEE Press.

