
TSCH and 6TiSCH for Contiki: Challenges, Design and Evaluation

Simon Duquennoy∗†, Atis Elsts‡, Beshr Al Nahas§ and George Oikonomou‡
∗Inria Lille - Nord Europe, France †RISE SICS, Sweden
‡University of Bristol, UK §Chalmers University, Sweden

Abstract—Synchronized communication has recently
emerged as a prime option for low-power critical applications.
Solutions such as Glossy or Time Slotted Channel Hopping
(TSCH) have demonstrated end-to-end reliability upwards of
99.99%. In this context, the IETF Working Group 6TiSCH
is currently standardizing the mechanisms to use TSCH in
low-power IPv6 scenarios. This paper identifies a number of
challenges when it comes to implementing the 6TiSCH stack.
It shows how these challenges can be addressed with practical
solutions for locking, queuing, scheduling and other aspects.

With this implementation as an enabler, we present an exper-
imental validation and comparison with state-of-the-art MAC
protocols. We conduct fine-grained energy profiling, showing
the impact of link-layer security on packet transmission.
We evaluate distributed time synchronization in a 340-node
testbed, and demonstrate that tight synchronization (hundreds
of microseconds) can be achieved at very low cost (0.3% duty
cycle, 0.008% channel utilization). We finally compare TSCH
against traditional MAC layers: low-power listening (LPL) and
CSMA, in terms of reliability, latency and energy. We show
that with proper scheduling, TSCH achieves by far the highest
reliability, and outperforms LPL in both energy and latency.

I. INTRODUCTION

As research in low-power networking matures, synchro-
nized communication is emerging as a prime option for
critical applications. Synchronized network flooding with
e.g., Glossy [12], or mesh networks based on IEEE 802.15.4-
2015 [14] Time Slotted Channel Hopping (TSCH) [27], have
demonstrated end-to-end reliability upwards of 99.99 %, in
real deployments.

At the same time, the industry has been pushing for
standardized solutions with the IETF’s low-power IPv6
stack: 6LoWPAN, RPL, CoAP, etc. This promises (1) inter-
operability; (2) integration with existing management tools
and networks; and (3) industrial-grade security levels. In this
context, the IETF Working Group 6TiSCH [23] is currently
standardizing the mechanisms to run IPv6 on top of TSCH.

TSCH is essentially a MAC layer that offers a globally-
synchronized network of sleepy nodes. Each node’s activity
is dictated by a time-slotted schedule. In this schedule,
communication uses channel hopping. 6TiSCH defines the
sublayer for the management of TSCH nodes and schedules.

This paper first identifies five distinct challenges we must
address for a flexible and efficient 6TiSCH implementa-
tion. We show how to address all five challenges in a
real setting, through our implementation for Contiki [6],
a leading operating system for the IoT. In particular, we

ACK RxTx

Rx

Frame Tx

ACK TxFrame Rx

G
u

ar
d

G
u

ar
d

C
C

A

A->B B->C C->D

A->B B->C C->D

Time Offset

C
h

an
n

el
 O

ff
se

t

Ti
m

es
lo

t
Sl

o
tf

ra
m

e

Figure 1. Diagram of a standard TSCH timeslot and example slotframe.
A timeslot is typically 10 ms long. Blank time before/between/after frames
are for processing: queuing and cryptography. Slotframes can be of any
finite length; they repeat over time.

discuss software architecture, locking, queuing and many
other aspects. In total, our implementation is already ported
to 9 different hardware platforms, and was successfully
tested for interoperability.

We then run testbed experiments (up to 340 nodes) to
answer the following questions:
• How accurate can synchronization get in large networks,

and what is the energy baseline?
• How does TSCH compare to the traditional MAC layers

CSMA and Low-power listening?
• How is energy spent, at both sending and receiving sides,

both with and without security?
Next, §II provides necessary background, and §III intro-

duces the five challenges we focus on. §IV presents our
solutions and implementation, followed by an evaluation in
§V. We discuss related work in §VI and conclude in §VII.

II. BACKGROUND

A. IEEE 802.15.4-2015 TSCH

Time Slotted Channel Hopping (TSCH) is a MAC layer
specified in IEEE 802.15.4-2015 [14], with a design inher-
ited from WirelessHART and ISA100.11a.

TSCH builds a globally synchronized mesh network.
Nodes may join the network after hearing a beacon from
another node. Time synchronization trickles from the PAN
coordinator down to leaf nodes along a Directed Acyclic
Graph (DAG) structure. Nodes update their synchronization
relative to their time source parent every time they receive
a data or ACK frame from it.

Time is cut into timeslots; timeslots are grouped into one
or more slotframes, which repeat over time (as illustrated in

Fig. 1). A timeslot, typically 10 ms long, is long enough
to accommodate the transmission of a frame and its ac-
knowledgement, including encryption/decryption times. A
schedule dictates whether to transmit, receive or sleep within
each timeslot. A timeslot in a slotframe is identified by its
time offset (when in the slotframe it occurs) and its channel
offset (denoting the frequency to communicate on). Slots can
be dedicated or shared, i.e., contention-free or contention-
based with CSMA back-off.

TSCH networks use channel hopping: the same slot in
the schedule translates into a different frequency at each
iteration of the slotframe. The result is that successive
packets exchanged between neighbor nodes are communi-
cated at different frequencies. In case a transmission fails
because of external interference or multi-path fading, its
retransmission happens on a different frequency, often with
a better probability of succeeding than using the same
frequency again [25].

How the communication schedule in the TSCH network
is built and maintained is out of the scope of the es-
tablished standards. 6TiSCH, detailed next, proposes the
options to schedule either (1) centrally like WirelessHART
and ISA100.11a which computes routes and schedules from
link statistics and traffic information gathered in the network
or (2) in a distributed fashion.

B. IETF 6TiSCH

The IETF Working Group 6TiSCH [23] was chartered in
2013 to enable IPv6 on top of TSCH. It covers architecture,
interface, scheduling and security aspects. The Working
Group is still active at the time of writing, with one RFC and
a number of active Internet-Drafts. 6TiSCH enables node
and schedule management via a CoAP interface, building
on COMI (CoAP Management Interface). It also defines
6top, a sub-layer that enables neighbor-to-neighbor slot
installation/removal. 6top can run one or several scheduling
functions, which defines rules about when and how to add
and remove slots at each node. The architecture documents
also define a secure join process.

6TiSCH also defines a so-called minimal configuration,
which must be supported by all implementations in order
to achieve basic interoperability. This configuration includes
a simple static schedule and security architecture, based on
two keys K1 and K2. K1 is used for authentication-only
of beacons, while K2 is used to encrypt and authenticate
data and ACK traffic. In addition, the minimal configuration
defines how TSCH interacts with upper layers and the
RPL routing protocol. In particular, it ensures a consistent
mapping between the RPL routing topology and the TSCH
time-source graph.

III. CHALLENGES

For an implementation of TSCH and 6TiSCH to be
standards-compliant, versatile and efficient, we need to ad-

dress a number of key challenges (some of which were
discussed in [27]). We identify the following five chal-
lenges: standards-compliance, timing precision, portability,
efficiency and interface with upper layers.
C1: Standards-compliance The first challenge in our
stack is to ensure compliance with the standards: TSCH and
6TiSCH. We support only a subset of the standards, but
we do so in a fully compliant way. Standards-compliance
includes timeslot and slotframe operation as well as security.
C2: Timing Precision The second challenge is to achieve
precise timings. Operations within a TSCH timeslot are
defined at a micro-second precision. Nodes are required
to stick to the timeslot as closely as possible, and to
maintain synchronization with their time source(s) as tightly
as possible.
C3: Portability The third challenge is to ensure portabil-
ity across the many platforms supported by the Contiki OS,
including both 16 and 32-bit MCUs, and a variety of radio
chips. Portability is a pragmatic but important constraint, as
it precludes relying on features that only few platforms offer.
In our design, we carefully select relevant radio interfaces
offered by Contiki, and propose extensions where needed.
C4: Efficiency The next challenge is efficiency, in MCU
time and energy. Our aim is to be as energy-efficient as
possible, to the extent that does not compromise portability
or timing precision.
C5: Interface with Upper Layers Finally, we need
means for upper layers to interact with the timing-sensitive
TSCH MAC layer. This is non-trivial because the time-
sensitivity of TSCH requires it to be interrupt-driven. Our
design includes solutions for race-condition free operation
of Contiki’s IPv6 stack on top of TSCH.

IV. DESIGN

This section discusses how we address the five technical
challenges (C1 to C5), so as to enable a flexible and efficient
6TiSCH stack for constrained micro-controllers.

A. Slot Operation

In order to support standard-compliant slots (C1) and
address the timing precision challenge (C2), our design
is fully driven by timer interrupts. Nodes wakeup at the
beginning of every slot that is active (listen and/or transmit)
in their schedule. For transmit slots, they prepare and encrypt
the packet to be sent, and go back to sleep until the planned
transmission time. They then transmit, go back to sleep until
the expected arrival time for the ACK. After receiving the
ACK, they look up their schedule for the next active slot, set
a timer for the next wakeup and go back to sleep. Receive
slots operate conversely, and nodes also sleep between the
different events within timeslots.

All operations within a timeslot take place in interrupt
handlers, to ensure tight timing. We implement the transmit
and receive procedures as protothreads [7]. This result is

ApplicationsApplicationsApplications

TSCH receive routineTSCH send routine

O
u

tg
o

in
g

Se
n

t

In
co

m
in

g

IPv6 Stack

U
p

p
er

 la
ye

rs
TS

C
H

Figure 2. TSCH and the upper layers access different packet queues in a
lock-free manner, respectively from and outside of interrupt context. Note
that there is one distinct transmit queue per (active) neighbor.

more readable (sequential) code that does not sacrifice the
timing requirements (runs on an event kernel).

Note that in our current implementation, nodes stay busy
waiting within an interrupt context whenever expecting an
incoming frame. Alternatively, they could turn the radio on,
go back to sleep and wait for a radio interrupt to process
the frame and schedule the next wakeup (e.g., for ACK
transmission). The latter approach, albeit more efficient, is
made difficult due to limitations of Contiki’s current radio
driver interface and the different triggers radio chips employ
to signal interrupts; i.e., start or end of frame. Enabling
such a busy wait-free operation in a way that does not
compromise portability (C3) is on our roadmap.

B. Locking and Queuing

An important challenge in TSCH is to safely interface the
synchronous interrupt-driven engine with the asynchronous
system’s upper layers (C5). To this end, we rely on two
tools: ring buffers for outgoing, sent, and incoming packet
queues, and a global lock for core TSCH operations.

We use a fixed-size lock-free ring buffer implementation
that is safe and lightweight to realize the packet queues
between TSCH and the upper layers. We have a distinct
transmit queue for each neighbor, filled by upper layers and
consumed by TSCH, within interrupts. In addition, there is
a queue for packets that need post-transmission processing;
i.e., upper layer callbacks. This queue is filled by TSCH
inside an interrupt, and consumed by upper layers within a
process context. Finally, TSCH has an input queue, where
it puts all valid incoming data frames, processed later by an
upper layer process. Fig. 2 illustrates which modules read
and write to the different queues, in a lock-free manner.

Some other operations, however, need to write to sensitive
TSCH state and require a global lock. Examples of such are
schedule and neighbor table maintenance where new neigh-
bor queues are created. In our design, all such operations
must be performed outside interrupt contexts. Whenever
attempting such maintenance while an active TSCH slot is
going on, the process will busy wait until the end of the slot,

take the lock, proceed, and release the lock. Slots starting
with a busy lock will be skipped; the node goes back to
sleep until the next scheduled active slot.

C. 5-byte Modular Arithmetic

TSCH relies on the Absolute Slot Number (ASN), which
counts slots from the beginning of the network’s life. In
order to never virtually loop, the ASN is a 5-byte unsigned
integer. With 10 ms slots, it would take over 348 years for
the ASN wrap. The ASN is used (1) to compute the current
channel, given a slot’s channel offset; (2) to find the current
time offset in any given slotframe; (3) as cryptographic
nonce for link-layer security. During slot operation (within
an interrupt context), nodes need to compute the modulo
of the ASN to some integer value v (e.g., slotframe length,
hopping sequence length), in order to obtain the current time
offset or current physical channel respectively.

For fast and memory-efficient 5-byte modulo arithmetic
(C4), our design proposes a data structure dedicated to ASN
arithmetic. Integers that will be used as divisor of modulo
operations are stored in this structure. In addition to the inte-
ger actual value v, the structure stores the result of 232 mod
v, denoted r. Whenever ASN mod v is needed, it is then
simply computed as (ASNlsb mod v+r×ASNmsb) mod v,
where ASNlsb are the four least significant bytes of ASN,
and ASNmsb is the ASN’s most significant byte. Doing so,
TSCH can operate free of any 64-bit arithmetic, rendering
it efficient both on 16-bit and 32-bit platforms.

D. Distributed Time Synchronization

Crystal oscillators are never perfectly accurate, and exhibit
a clock drift typically in the range of 10 ppm (parts-per-
million). As TSCH requires global network synchronization,
it is essential that nodes correct the drift to their time source
regularly. At 10 ppm each, two nodes have a relative drift up
to 20 ppm, which leads to a desynchronization of 20µs every
second. Assuming guard times of ±1100µs (the default),
independent clocks run out of synchronization after 55 s.

In TSCH, nodes re-synchronize their clock with their time
source(s) on two distinct occasions (1) upon receiving a
frame from a time source or (2) upon receiving an ACK
from a time source. In the former case, the node simply
compares the reception time against the expected time, and
adjusts its clock internally. In the latter case, the time source
does the time delta computation upon receiving a unicast,
and then includes the delta as part of the ACK (as an
Information Element). When receiving the ACK, the node
adjusts its internal clock. Note that the clock may be adjusted
backwards with no adverse effect on slot operation as the
time deltas are bounded by one TSCH guard time.

We build on adaptive time synchronization [22], whereby
each node learns the relative drift to its time source for
tighter synchronization. The drift is basically learnt from
past synchronization. Whenever scheduling a wakeup, the

node will internally compensate for the anticipated drift
and set its timer accordingly. The mechanism enables re-
synchronization intervals in the order of a few minutes [2].

In addition, we offer dynamic synchronization traffic,
both beacons and keep-alives. For TSCH beacons, we
map the transmission period to RPL’s beaconing interval
(Trickle [15]). For keep-alive messages (send on-demand by
nodes that need a clock update), nodes use a short period,
e.g., 30 s, upon attaching to a new time source. As they
learn the relative drift to their time source, they start using a
longer period, such as 120 s. These two mechanisms result in
reduced synchronization overhead as the topology stabilizes,
fulfilling both C2 (timing) and C4 (efficiency).

E. Timers and Timestamping

For enabling time synchronization, nodes must be able
to produce accurate packet timestamps (C2). We offer two
solutions, where the timestamping is either done (1) by the
radio chip or (2) by the MCU. The former case is the
common case, where we rely on the radio to provide accurate
reception timestamps. The latter case is useful on platforms
such as the jn516x where the MCU offers a higher-frequency
oscillator than the radio.

As for the internal clock, our design can support both low-
and high-frequency crystal oscillators, each with their own
tradeoff between energy and precision. Our port to the Texas
Instruments CC2650 System-on-Chip even supports the joint
use of two crystals, for low-power and fine-grained syn-
chronization (sub-microsecond accurate assuming frequent
re-synchronization [9]).

F. Security

Our implementation performs TSCH and 6TiSCH security
as per the standard documents, with distinct security keys
for beacons and data traffic (C1). For portability, we rely on
Contiki’s generic AES-CCM interface, which can perform
frame encryption and decryption by using the cryptographic
hardware acceleration capability available on a number of
chips supported by Contiki (C3). For timing accuracy, we
encrypt the full frame as early as possible during a timeslot,
go back to sleep and wakeup a few microseconds prior to
actual transmission (C2). At the receive end, however, the
incoming frame must be decrypted and the outgoing ACK
encrypted, right in the critical path. The standard provisions
1000µs for this operation, and this duration proved suffi-
cient for most hardware platforms we experimented with.
Platforms without a cryptographic coprocessor have to run
in networks where looser timeslot timings are accepted.

G. Interaction with RPL

We offer a configurable interface for the interaction be-
tween TSCH and upper layers, RPL in particular (C5). The
interface is basically a set of callbacks that notify RPL that
TSCH has joined or left a network, and that RPL uses to

notify TSCH of a parent switch or new beaconing interval.
This enables to implement the 6TiSCH architecture, which,
for instance, defines how to map the RPL rank (distance to
the root) and preferred parent to the TSCH join priority and
time source. It also makes it possible to flush the RPL state
whenever leaving a TSCH network, for a clean-slate re-join.

H. Scheduling

Scheduling is out of the scope of the TSCH standard, and
is not yet fully covered by 6TiSCH either. Our implementa-
tion provides a software API for scheduling, supporting slot-
frame and timeslot addition, removal and update. By default,
we run the so-called 6TiSCH minimal configuration (C1),
where all communication takes place on a single timeslot,
within a single slotframe, based on contention. This results
in a behavior equivalent to slotted ALOHA [20]. Alterna-
tively, we provide Orchestra [8], which is an autonomous
scheduler, where nodes compute their schedule locally, based
on their routing state. With Orchestra, timeslot coordinates
are simply based on a hash of the node’s and neighbor’s
MAC addresses. The standardization of this mechanism in
6TiSCH is currently under discussion.

I. Logging

Logging through UART communication is made difficult
by the timing constraints of TSCH (C2). Our implementation
provides a logging module that enables delayed logging from
timing-critical interrupts. The logs are simply written to a
queue, and converted to human-readable format and dumped
over UART later, from a process outside of interrupt context.

J. Portability

One of our main design goals is portability (C3). Our
implementation is done as a MAC-layer module of Contiki,
i.e., it follows well-defined interfaces to the upper layers
(6LoWPAN) and lower layers (radio drivers). In addition to
the existing Contiki requirements, a hardware platform must
provide the following features in order to run TSCH:
• Radio poll mode: Disables radio interrupts – instead, the

MAC layer will poll the radio for new frames;
• Timestamping: Radios must provide access to packet

timestamps (required at join time, used my most platforms
for subsequent synchronization);

• Raw Tx/Rx modes: To run TSCH, the radio must support
disabling automatic channel check assessment (CCA), au-
tomatic transmission of ACK frames and address filtering;

• Radio delays: Drivers must provide numbers on the H/W
delay involved when turning the radio on or transmitting.
Because of our portability goals, we chose not to exploit

hardware-specific features of certain platforms. For instance,
the jn516x SoC offers advanced radio management features
such as delayed transmissions (the MCU sleeps during the
delay), or time-bounded listening (listen until a packet is
received or some deadline is reached). Both these features

Platform MCU Timer(s) Radio Timeslot (ms) Largest experiment to date

Tmote Sky msp430 (16 bits) 32.768 kHz cc2420 (2.4 GHz) 15 98 nodes (Indriya [3])
Zolertia Z1 msp430 (16 bits) 32.768 kHz cc2420 (2.4 GHz) 15 A few nodes
NXP jn516x OpenRISC (32 bits) 32.768 kHz or 16 MHz jn516x (2.4 GHz) 10 25 nodes (private testbed)
cc2538dk Cortex-M3 (32 bits) 32.768 kHz cc2538 (2.4 GHz) 10 A few nodes
OpenMote-cc2538 Cortex-M3 (32 bits) 32.768 kHz cc2538 (2.4 GHz) 10 A few nodes
Zolertia Zoul Cortex-M3 (32 bits) 32.768 kHz cc2538 (2.4 GHz) 10 25 nodes (private testbed)

cc1200 (868 MHz) 32
cc2650dk Cortex-M3 (32 bits) 65.536 kHz and 4 MHz cc2650 (2.4 GHz) 10 A few nodes
SPES-2 [11] Cortex-M3 (32 bits) 65.536 kHz and 4 MHz cc2650 (2.4 GHz) 10 14 nodes (private testbed)
IoT-LAB M3 node Cortex-M3 (32 bits) 32.768 kHz AVR rf2xx (2.4 GHz) 10 348 nodes (IoT-LAB Grenoble [1])

Table I. OVERVIEW OF THE PLATFORMS CURRENTLY SUPPORTED BY OUR TSCH/6TISCH IMPLEMENTATION.

would make for a more energy-efficient implementation on
that specific platform, but would increase complexity in the
TSCH codebase and make it less portable. Another opti-
mization we choose not to implement is to overlap packet
loading with transmission and packet reading with reception.
It is possible as well to inline packet encryption/decryption
with Tx/Rx on many platforms by utilizing special features
on their cryptographic coprocessor, instead of encrypting
first and transmitting later. The effect of these is shorter
slot times, but it would make the code less portable.

K. Interoperability Tests and Supported Platforms

Contiki versions of TSCH were demonstrated to be in-
teroperable (C1) in the ETSI plug-tests in Prague (2015)
and in Paris (2016). In these events, it was tested against
a number of independent implementations, including the de
facto reference OpenWSN [26].

A year after its release, our implementation has already
been ported to 9 hardware platforms (C3), involving 6 differ-
ent radio chips. Tab. I provides a summary of the currently
supported platforms and their peculiarities. The current
platforms include 16- and 32-bit architectures, with low- and
high-frequency crystal oscillators, and over both 2.4 GHz
and 868 MHz. In the 2.4 GHz case, the slot length varies
between 15 ms (legacy platforms, with slower interfaces)
and 10 ms (the default in IEEE 802.15.4-2015 and IETF
6TiSCH). In the 868 MHz case, where the cc1200 radio
hardware runs in 802.15.4g mode at 50 kbps, the slot is made
as large as 32 ms assuming a maximum frame length of 127-
byte frames (note that the standard allows up to 2047 bytes).

V. PERFORMANCE EVALUATION

This section analyzes the performance of TSCH and
compares it to state-of-the-art MAC layers.

A. Synchronization

We evaluate our system’s ability to keep global synchro-
nization in a large-scale network. We use the FIT IoT-LAB
testbed in Grenoble [1] with 340 M3 nodes at the time of the
experiments. The nodes run raw TSCH, without 6TiSCH.
Nodes basically listen for a beacon and attach to the first
node they hear (average hop count: 5.2). Please note that
on a few occasions (we recorded eight in the course of
this experiment), nodes attach to a time source they have a

very weak link to, to only later lose synchronization and re-
join. In real networks, with 6TiSCH running on top, TSCH
would use the links selected by RPL at the routing layer,
with guaranteed connectivity.

The setup is as follows: nodes transmit a beacon every
20 s. If a node does not hear from its parent for 30 s, it
initiates a keep-alive. After learning the relative drift to its
parent, the keep-alive timeout extends to 120 s. Doing so, we
base synchronization primarily on beacons, with keep-alive
as a fallback. Such a setup is particularly suited to dense
networks, where a single beacon is enough to re-synchronize
many nodes.

We use Orchestra [8] for scheduling, with two slotframes.
The first slotframe is for beacons, with length 397 and an Or-
chestra sender-based slot. The second slotframe is for keep-
alives, with length 101, and an Orchestra receiver-based slot.
Fig. 3 shows the results from a 60 min experiment.

It takes less than 90 s for all nodes to join, as shown
in Fig. 3a. Fig. 3b shows the nodes’ relative drift to their
time source, as computed by our internal drift compensation
mechanism. The largest recorded drift was 9 ppm.

Fig. 3c shows the time corrections applied by the nodes
during the run. Here, nodes use the TSCH standard guard
time, of ±1100µs. After a few minutes, nodes adjust to
their time source’s drift, and get more tightly synchronized.
Quite interestingly, over 97 % of the packets recorded were
received with an error below 160µs. This level of synchro-
nization is sufficient to enable capture effect; a phenomenon
that TSCH benefits from in contention-based slots.

Note that after convergence (the few first minutes), all
nodes reach a duty cycle of about 0.3 %. TSCH results in
particularly low channel utilization, here only 0.008 % at
each node, spread over 16 channels. Most of the energy is
spent listening, and more fine-tuning of guard times could
further reduce the baseline cost.

B. Comparison against other MAC Protocols

We compare the performance of TSCH with traditional
IoT MAC layers – low-power listening (LPL) and always-
on CSMA – in terms of reliability, latency and energy. To
this end, we set up a small controllable testbed with five
CC2650 SoC nodes [11]. The nodes are connected in a star
network. As the LPL protocol we use ContikiMAC [5]. For
always-on CSMA, we enable the nullrdc layer of Contiki.

0 20 40 60 80
Join time (s)

0

50

100

150

200

250

300

350

Jo
in

ed
 n

od
es

 (#
)

(a) Join time

0 50 100 150 200 250 300 350
Nodes

0
1
2
3
4
5
6
7
8
9

Dr
ift

 to
 T

im
e

So
ur

ce
 (p

pm
)

(b) Drift

0 5 10 15 20 25 30 35 40 45 50 55 60
Runtime (minutes)

1000

500

0

500

1000

Sy
nc

 e
rr

or
 (µ
s)

(c) Sync. Error

Figure 3. Time synchronization experiment, 340 nodes. (a) Shows the number of joined nodes at any given time after bootstrap. (b) Shows the
distribution of the nodes’ drift to their time source. (c) Shows how synchronization errors evolve with time. The duty cycle converges to 0.3 %.

0.25 1.0 4.0 16.0
Packet interval, sec

0

2

4

6

8

10

12

14

16

R
a
d
io

 d
u
ty

 c
y
cl

e
,

%

TSCH minimal TSCH dedicated LPL CSMA

0.25 1.0 4.0 16.0
Packet interval, sec

0

20

40

60

80

100

Li
n
k-

la
y
e
r

P
R

R
,
%

(a) Link-layer PRR

0.25 1.0 4.0 16.0
Packet interval, sec

0

20

40

60

80

100

E
n
d
-t

o
-e

n
d
 P

D
R

,
%

(b) End-to-end PDR

0.25 1.0 4.0 16.0
Packet interval, sec

1

10

100

1000

10000

(c) Latency

0.25 1.0 4.0 16.0
Packet interval, sec

0

2

4

6

8

10

12

14

16

R
a
d
io

 d
u
ty

 c
y
cl

e
,
%

(d) Duty cycle

Figure 4. Comparison of TSCH with Low-Power Listening (LPL)
and CSMA. For TSCH, the 6TiSCH minimal schedule and a collision-free
schedule are compared. Note the log y-scale used for latency. Note that the
duty radio cycle for CSMA is 100 %, not fully shown in the graph.

We compare two schedules of TSCH: the 6TiSCH mini-
mal one, with one single shared Tx/Rx slot, and a custom
dedicated one, with one Tx slot assigned to each leaf
node. The slotframes have a length of 9 slots. The back-
off exponent for shared slots is set to 4, the TSCH guard
time to 800µsec. For LPL, the channel sampling frequency
is set to 8 Hz; phase lock is enabled, with the max Tx time
towards known neighbors set to 30.5 ms. The number of
MAC-layer retries is 8 for all protocols. Each of the leaf
nodes generates one IPv6 UDP packet at a random point
during a period ranging from 0.25 s to 16 s to emulate high
and low rate traffic. LPL and CSMA run on channel 25,
while TSCH runs on 25 and 26.

Fig. 4 summarizes the results, discussed next.
Link-layer Packet Reception Rate (PRR) The PRR is
the link success rate, before MAC retries. In this topology
the vast majority of lost packets are due to contention. For

TSCH, this leads to an important difference between the
minimal (contention-based) and dedicated schedules, espe-
cially with high-rate packet generation. For the 0.25 second
packet generation interval, TSCH minimal shows 33.66 %
PRR while TSCH dedicated shows 99.46 % PRR.

LPL (37.2 % PRR in the 0.25 s experiment) outperforms
TSCH minimal as in LPL, transmissions are more randomly
distributed, while TSCH minimal offers only one slot for all
nodes to contend. CSMA (93.15 % PRR in the 0.25 s exper-
iment) outperforms LPL, as packet transmissions without
LPL are shorter and less likely to collide.

End-to-end Packet Delivery Rate The PDR is the end-
to-end success rate, after MAC retries. The results show
that PDR in the 0.25 s experiment for TSCH minimal and
LPL are below 50 %. Both the number for active slots per
second and the maximal number of retransmissions are too
small to accommodate for the extensive link-layer packet
loss. For all other experiments, all protocols show >99 %
PDR. However, only TSCH dedicated achieves consistent
100 % packet delivery rate in all scenarios.

Latency For the high-rate experiments, TSCH dedicated
shows one to two orders of magnitude lower latency than
TSCH minimal and LPL. Here, the main factor affecting
the latency is the collision rate and the resulting MAC-layer
back-off. For the low-rate experiments, the latency is similar
between the three protocols. It is mostly determined by the
slotframe size (for TSCH) and the channel check interval
(for LPL). CSMA shows by far the best latency of all – it
sends packets immediately as they are generated, leading to
nearly no collision nor back-off.

Duty Cycle The radio duty cycle of the sink node is
excluded from this statistic, as sink nodes usually are mains
powered. LPL is less efficient than TSCH minimal with
these specific configuration settings when the datarate is
high (0.25 s period). This is explained by the fact that most
of the energy in low-rate TSCH networks is wasted in idle
listening [16]. In contrast, the dedicated schedule has no
idle listening and is by far the most energy-efficient (down
to 0.073 % duty cycle in the 16 s experiment).

TxInit Ack

(a) TSCH, Tx

RxInit Ack

(b) TSCH, Rx

CCA Tx strobes Ack

(c) LPL, Tx

CCA RxInit Ack

(d) LPL, Rx

0 2000 4000 6000 8000 10000 12000
Microseconds

0

5

10

15

20

m
A

Security disabled Security enabled

Figure 5. Energy usage profiles for Tx and Rx of a single packet. 98 byte packet size, excluding MAC headers. Note the x-axis scale for “LPL, Tx”.

C. Energy consumption

We compare in Fig. 5 the energy consumption profile for
transmission and reception of a single packet in TSCH and
in LPL (ContikiMAC) and with security on/off.

In these experiments we use the maximal packet size
that was supported with all four configuration settings,
98 bytes, excluding MAC header. For experiments with
security enabled, the IEEE 802.15.4 packet security level
is set to 0x5: data encrypted and authenticated with 32-bit
MIC block [14]. Encryption and authentication is done using
hardware-accelerated AES-128 algorithm.

While TSCH and LPL have roughly similar packet Rx
profiles, Tx is much more efficient for TSCH because of its
time-synchronized nature (notice the different x-axis scales
– the result is a factor 3 in cumulative energy). LPL repeats
the packet transmissions several times to wake the receiver
up, while TSCH transmits it only once. Another major differ-
ence is that TSCH does not perform CCA (unless configured
to do so), while LPL shows multiple CCA peaks before the
transmissions start (needed by to resolve contention in a
unslotted context).

All recordings start with approximately 1 ms long period
of approximately 5 mA current level. This is the time re-
quired for the CC2650 radio to become fully operational.
LPL Tx activity proceeds by doing the CCA checks. Subse-
quently, for Tx activities, the packet is loaded in the FIFO
(<1 ms), and then transmitted (approximately 4 ms). In Rx
mode, after receiving the packet, it is decrypted if required
and an ACK is created and transmitted.

Enabling security increases packet size just by a few bytes
(depending on the protocol), hence has no large impact on
Tx/Rx duration. However, for TSCH Rx the packet must be

decrypted before an ACK is generated. This is visible in
the graphs as increased energy consumption between packet
and ACK transmission. The additional time required to
encrypt or decrypt the packet on CC2650 is 340µs (±30µs)
according to our measurements. Also note that with LPL,
reception starts earlier with security than without: this is only
incidental, caused by the randomness in the time between
the node’s wakeup and the start of actual packet reception.

Note that on CC2650 the radio is not turned off between
the packet and the ACK; this behavior is different on other
Contiki platforms, for example, CC2240 and CC2538.

VI. RELATED WORK

This section reviews work related to TSCH and 6TiSCH.
Synchronization A key to achieving tight and low-power
time synchronization in TSCH is for nodes to learn the rela-
tive drift to their time source(s). Stanislowski [22] showed it
was possible to consume one order of magnitude less energy
by adopting adaptive drift compensation. The concept was
later applied to multi-hop [2], with an additional mechanism
to cascade time synchronization from coordinator down to
leaves. As a result, nodes increase their synchronization
period, reaching as high as a 3 minutes.

Our implementation builds on the same principles. When
running at a high synchronization frequency (period of 4 s),
we have demonstrated accuracy below 1µs [9]. Further, we
also evaluated in details the impact of guard times on energy
consumption [16].
Channel Hopping Watteyne et al. [25] proposed an in-
depth evaluation of channel hopping in the TSCH context.
Trace-driven simulation results show how channel hopping
mitigates multi-path fading and interference. By default,

TSCH uses all available 16 channels of the IEEE 802.15.4
PHY layer. Hopping blindly over all channels enables re-
liable operation even when a subset of the channels has
poor quality. Adaptive channel blacklisting was nonetheless
proposed [10] that pushes reliability and throughput further.

By standard, a coordinator can advertise its own hopping
sequence, that joining nodes will learn when receiving bea-
cons. Our implementation supports this feature, enabling an
administrator to perform (re-)deployment-time blacklisting.
Scheduling Scheduling in TSCH and 6TiSCH has re-
ceived significant attention from both a theoretical and
practical standpoints. Early solutions where focusing on
static networks with pre-defined traffic patterns [4], [18].
With a centralized scheduler, these solutions demonstrated
reliability over 99.999%. Distributed solutions were later
proposed, e.g., by Tinka et al. [24], where a rendez-vous
slot is used for discovery and slot installation. Another
interesting approach is to perform multi-hop reservation
and label switching [17]. On-the-fly resource reservation
in a 6TiSCH context was demonstrated by Palattella et
al. [19], demonstrating reliable operation in a 50 node
network (simulation).

Our scheduler Orchestra [8] is complementary, as it
provides a basic schedule that nodes can maintain au-
tonomously, simply based on the local knowledge of their
neighborhood. Orchestra can potentially be used jointly with
other schedulers.
Other MAC-layer Aspects We presented fine-grained
energy measurements of the energy overhead of link-layer
security in TSCH. On a very related topic, Sciancalepore et
al. [21] dissected the impact of various security levels
on timeslot length on a wide range of platforms. Their
measurements show that the minimal timeslot length varies
greatly among platforms, ranging from 9 to 88 ms.

Finally, Deguglielmo et al. [13] proposed an analytical
model of the back-off mechanism in TSCH, taking into
account the occurrence of capture effect in shared slots.

VII. CONCLUSION

We discussed and addressed the main challenges that lie in
providing a flexible and efficient TSCH and 6TiSCH imple-
mentation. Through our Contiki implementation and a series
of testbed experiments, we find that: (1) Synchronization in
large (340 nodes) networks is possible at high accuracy (97%
of the time under 160µs) for a low cost (duty cycle of 0.3%);
(2) TSCH, when running dedicated slots, outperforms LPL
in all key metrics: reliability, latency, duty cycle; (3) At a
micro-level, a TSCH and LPL spend about the same amount
of energy for receptions, but TSCH has an edge (factor 3) on
transmissions. Link-layer security comes at a low overhead.
We believe our implementation to be an enabler for more
further research, in particular as it brings the 6TiSCH stack
to the Contiki ecosystem, where a variety of upper-layer
protocols and applications already exist.

REFERENCES

[1] C. Adjih et al. FIT IoT-LAB: A large scale open experimental
IoT testbed. In WF-IoT, 2015.

[2] T. Chang et al. Adaptive synchronization in multi-hop tsch
networks. Comput. Netw., 2015.

[3] M. Doddavenkatappa et al. Indriya: A low-cost, 3D wireless
sensor network testbed. In ICST TridentCom, 2011.

[4] L. Doherty et al. Channel-Specific Wireless Sensor Network
Path Data. In ICCCN, 2007.

[5] A. Dunkels. The ContikiMAC Radio Duty Cycling Protocol.
Technical Report T2011:13, SICS, 2011.

[6] A. Dunkels et al. Contiki - A Lightweight and Flexible
Operating System for Tiny Networked Sensors. 2004.

[7] A. Dunkels et al. Protothreads: Simplifying event-driven pro-
gramming of memory-constrained embedded systems. 2006.

[8] S. Duquennoy et al. Orchestra: Robust Mesh Networks
Through Autonomously Scheduled TSCH. 2015.

[9] A. Elsts et al. Microsecond-Accuracy Time Synchronization
Using the IEEE 802.15.4 TSCH Protocol. In SenseApp, 2016.

[10] A. Elsts et al. Adaptive Channel Selection in IEEE 802.15.4
TSCH Networks. In Global Internet of Things Summit, 2017.

[11] X. Fafoutis et al. Demo: SPES-2–A Sensing Platform for
Maintenance-Free Residential Monitoring. In EWSN, 2017.

[12] F. Ferrari et al. Efficient Network Flooding and Time
Synchronization with Glossy. 2011.

[13] D. D. Guglielmo et al. Analysis and experimental evaluation
of IEEE 802.15.4e TSCH CSMA-CA Algorithm. In IEEE
TVT, 2016.

[14] IEEE. Standard for Low-Rate Wireless Networks. Std
802.15.4-2015.

[15] P. Levis et al. Trickle: A self-regulating algorithm for code
propagation and maintenance in wireless sensor networks. In
NSDI, 2004.

[16] A. Mavromatis et al. Impact of Guard Time Length on IEEE
802.15.4e TSCH Energy Consumption. In SECON, 2016.

[17] A. Morell et al. Label switching over IEEE802.15.4e net-
works. Trans. on Emerging Telecom. Technologies, 2013.

[18] M. R. Palattella et al. Traffic aware scheduling algorithm
for reliable low-power multi-hop ieee 802.15.4e networks. In
PIMRC, 2012.

[19] M. R. Palattella et al. On-the-fly bandwidth reservation for
6tisch wireless industrial networks. IEEE Sensors, 2016.

[20] L. G. Roberts. Aloha packet system with and without slots
and capture. SIGCOMM Comput. Commun. Rev., 1975.

[21] S. Sciancalepore et al. Link-layer security in tsch networks:
effect on slot duration. Trans. on Emerging Telecom. Tech-
nologies, 2016.

[22] D. Stanislowski et al. Adaptive synchronization in
IEEE802.15.4e networks. IEEE Trans. on Industrial Infor-
matics, 2014.

[23] X. Thubert (Ed.) et al. An Architecture for IPv6 over the
TSCH mode of IEEE 802.15.4 - draft-ietf-6tisch-architecture-
10, June 2016. IETF Draft.

[24] A. Tinka et al. A Decentralized Scheduling Algorithm for
Time Synchronized Channel Hopping. EAI Trans. on Mobile
Comm. and Applications, 2011.

[25] T. Watteyne et al. Mitigating Multipath Fading through
Channel Hopping in Wireless Sensor Networks. May 2010.

[26] T. Watteyne et al. OpenWSN: a standards-based low-power
wireless development environment. Trans. on Emerging
Telecom. Technologies, 2012.

[27] T. Watteyne et al. Industrial Wireless IP-based Cyber Physical
Systems. In PIEEE, special issue on CPS, 2016.

