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Abstract—Programming Internet of Things (IoT) applications
is challenging because developers have to be knowledgeable in
various technical domains, from low-power networking, over
embedded operating systems, to distributed algorithms. Hence,
it will be challenging to find enough experts to provide soft-
ware for the vast number of expected devices, which must
also be scalable and particularly safe due to the connection
to the physical world. To remedy this situation, we propose
an architecture that provides Web-like scripting for low-end
devices through Cloud-based application servers and a consistent,
RESTful programming model. Our novel runtime container
Actinium (Ac) exposes scripts, their configuration, and their
lifecycle management through a fully RESTful programming
interface using the Constrained Application Protocol (CoAP).
We endow the JavaScript language with an API for direct
interaction with mote-class IoT devices, the CoapRequest object,
and means to export script data as Web resources. With Actinium,
applications can be created by simply mashing up resources
provided by CoAP servers on devices, other scripts, and classic
Web services. We also discuss security considerations and show
the suitability of this architecture in terms of performance with
our publicly available implementation.

I. INTRODUCTION

The Internet of Things (IoT) needs new software concepts
and architectures that are different from traditional networked
embedded devices. The latter have been mostly independent
islands, accessed only through application-level gateways, and
fulfilling specialized tasks. With the rising presence of light-
weight TCP/IP suites [6], [14], this changed and ‘things’ are
becoming directly accessible through the Internet. Program-
ming IoT applications remains unnecessarily difficult, though.
Developers have to program different operating systems, focus
on platform-dependent issues, and design network interactions.
For the IoT to take off, the programming of IoT devices needs
to be as easy as scripting a simple Web application.

The Web of Things (WoT) vision proposes to connect things
within the IoT using simple, well-defined RESTful interfaces
[34]. This is a significant step towards a fully-standardized
embedded IoT stack. In our work, we present a system that
encompasses constrained devices with only about 10kB of
RAM and 100kB of ROM running a Web server directly.
Previous WoT solutions usually require either more powerful
devices or the Web server being on a gateway. A central design
choice is that servers do not include any application-specific
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Fig. 1. A script mashes up resources directly from IoT devices as well
as other scripts or remote Web services. Our novel runtime container fully
complies with the REST architectural style and even performs dynamic
installation, updates, monitoring, and removal of scripted applications through
RESTful interaction.

code. Instead, they only expose their basic features so that any
Internet-connected user or machine can use them for sensing
and actuation. [19] We argue that the natural next step to build
an IoT upon RESTful devices is to provide IoT developers
with the ability to script interactions, independent from Web
applications running in the browser.

Instead of defining a new language, we use the most
widespread scripting language in the Web, JavaScript, and
enhance it with an API for RESTful interaction with mote-
class devices. We propose a novel runtime environment that
exposes the scripts themselves through a RESTful interface,
making IoT service composition as easy as traditional Web
mashups. The runtime container, an IoT application server,
may be deployed anywhere with network access: In the
Cloud for public applications, or locally on a private server
for closed applications. This end-to-end RESTful architecture
allows to deploy scripts, to access things, and to call services
using the same paradigm, protocols, and, most importantly,
programming interface (as illustrated in Figure 1). This paper
demonstrates the suitability of Web-like scripting for the IoT.
Our solution, Actinium (Ac)1, is fully RESTful in the sense
that each entity—devices, applications, and runtime—exposes
itself through such an interface.

After reviewing the related work in Section II, we present
the design of our architecture in Section III. We include a
thorough discussion in Section IV on how authentication and

1Actinium is publically available at https://github.com/mkovatsc/Actinium



privacy can be handled in our model, based on Internet stan-
dards. Section V discusses the implementation of our open-
source prototype. Finally, Section VI evaluates Actinium’s
performance in realistic conditions, i.e., with communication
flowing between our application server and mote-class devices
using our campus IPv6 infrastructure. We show that the
overhead of scripting is reasonable, considering the latency
of low-power lossy netorks (LLNs) and JavaScript’s strength
in arithmetic and logic operations.

II. RELATED WORK

The approaches towards an Internet of Things span various
research fields. Here, we summarize in particular how IoT
applications are usually developed.

A. Application Programming

The basis for all device code is an embedded operating
system such as TinyOS2 or Contiki3, which is designed for
resource-constrained platforms. In the field of wireless sensor
networks (WSNs), the application code is traditionally written
directly atop the OS. It is often written in the same language
as the OS, statically linked to it, and not strictly isolated from
it. This makes applications efficient, but also error-prone and
complex, as programmers need to know the details of OS
and platform. When the software needs to evolve, developers
proceed with network-wide full image replacement [16], [28],
incremental update [26], or dynamic linking [7].

An interesting alternative is to embed a virtual machine
(VM) in the device and deploy applications compiled as
bytecode. This approach provides a higher-level of abstraction,
provides dynamic loading, software isolation, and minimizes
the size of compiled applications. One of the first VMs for
sensor networks was Maté [21], a framework for domain-
specific VMs with mobile code. Later, general-purpose VMs
were developed for resource-constrained platforms. Darjeeling
[4], for instance, supports a large subset of the Java language
and even a garbage collector.

Scripting languages raise the level of abstraction even
higher, providing the programmer with the ability to batch
well-defined basic operations. It is particularly well-suited for
WSN programming, as the functionality of each node in the
network is built upon a simple set of actions: periodic sens-
ing, alarm triggering, and actuation. This approach increases
productivity by making applications self-contained, focused
on functionality, and easy to test interactively. [25] On-
device script interpretation, as performed by SensorWare [3] or
dinam-mite [10], has comparatively high system requirements.
Thus, scripts are usually compiled before sending them to the
devices, for instance using Python [1].

Macro-programming is another solution, which aims for
programming a network as a whole by providing network-
scale abstractions. The early TinyDB [22] provided a SQL-
like database abstraction for sensor readings of a network.
It provided in-network processing where data is aggregated

2http://www.tinyos.net/
3http://www.contiki-os.net/

along the hops with convergecast messages. This is, however,
not practical for multiple stakeholders of specific readings,
as only averages, maximums, etc. can be provided. Nano-CF
[12] instead is designed for concurrent applications on a WSN
infrastructure. It optimizes the execution and traffic of a prede-
fined number of tasks on the motes through rate harmonized
scheduling and packet aggregation, or concatenation when
aggregation is impractical. Nano-CF uses code dissemination
for its tasks, mostly for homogeneous networks. So does
EcoCast [30], but instead of a domain-specific language, it
uses the Python scripting language to develop applications.
The code is then compiled for the platform, incrementally
linked, and efficiently patched into the devices.

B. Application Architectures

Most architectures for IoT-like applications have been ad
hoc solutions with TinyOS’s and Contiki’s custom message
formats [24] or proprietary standards such as the ZigBee Clus-
ter Library4. Especially macro-programming solutions come
with their own specialized protocols, even for media access
and routing [12], [22], [30].

With 6LoWPAN [15] and IP stacks for embedded op-
erating systems [6], [14], the system architectures became
more standardized and Internet integration of ‘things’ straight-
forward. The interoperability, however, often ends beneath the
application layer. Despite using UDP messages, prominent
deployments such as ACme [17] still required application-level
gateways to connect to other systems.

For interoperability, the Devices Profile for Web Services
(DPWS) can bring a Web application standard to low-end
devices. With an efficient binding [23] and EXI compression
[5], devices can directly process SOAP messages, even on
mote-class platforms. Usually, specialized EXI handlers are
generated for each application and deployed on the devices.

The Web of Things [8], [11], [34] builds upon HTTP for full
interoperability at the application layer and adapts the Web’s
REST architectural style for things. The idea is to provide a
simple stateless application-level interface with well-defined
semantics. Most WoT deployments still employ application-
level gateways, which host the Web servers and wrap the
communication towards devices. The Constrained Application
Protocol (CoAP) [29], however, brings lightweight UDP-based
RESTful interaction to low-end devices [18], [20].

Using REST’s uniform interfaces, Web resources can pro-
vide the full hardware functionality (e.g., GET sensor
value or POST actuation task) independent from
specific applications. Thus, no reprogramming of devices is
necessary and multiple applications can leverage the devices
at the same time. The idea of a powerful client that executes
the main part of the application was already introduced with
Marionette [33], used in EcoCast [30], and pushed further with
the thin server architecture [19]. Our work combines this idea
with Web-like scripting through a novel runtime container.

4http://www.zigbee.org/
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Fig. 2. An overview of our system architecture: Actinium apps are executed
in their own threads, isolated in a sandbox. They only communicate through
their RESTful interfaces: with IoT devices, other apps, and other servers on
the Web. The tree on the right shows the available resource structure when
three scripts are installed, two are instantiated (one of them twice), and two
instances are running.

III. ARCHITECTURAL DESIGN

We propose an architecture for networked embedded sys-
tems in which applications are realized through scripts running
on a server in the Cloud, accessing elementary functionality of
IoT devices through their RESTful interfaces. This approach
offers a great deal of flexibility and scalability because appli-
cations become computer-hosted apps rather than embedded
software. With Actinium, our application server, we extend
the WoT approach and advocate a truly end-to-end RESTful
approach where not only the devices have RESTful interfaces,
but the runtime container itself is RESTful. Our architecture
further allows applications to be shared through an ‘appstore,’
i.e., they can easily be uploaded, downloaded, customized,
signed, etc. We use the JavaScript scripting language because
it is the most prominent language for Web mashups and well-
known by many application developers, even by end-users.
The architecture, however, is not limited to JavaScript and
could also be transferred to other scripting languages.

Although we are aiming for a general RESTful design,
in this paper, we focus on the CoAP protocol—the most
light-weight protocol for RESTful interaction. Nonetheless,
the whole approach does also apply to HTTP-based devices
and services where feasible.

A. Apps as Resources

To implement IoT applications, we use modular Actinium
apps, which are designed as resources to fully leverage the
RESTful paradigm. They can provide their results through
GET handlers, accept stimuli by POST, or can be configured
via PUT. The central API for this is the app.root object,
which represents the root resource of an app:
// a handler for GET requests to "/"
app.root.onget = function(request) {
// that returns CoAP’s "2.05 Content" with payload

request.respond(2.05, "Hello world");
};

We limit Ac apps to consist of a single file, which enforces
developers to break complex applications down into multiple

scripts that have to communicate through their RESTful in-
terfaces. These modules then become reusable by other apps,
which makes the mashup concept more powerful. Multiple
motion sensors, for instance, could be wrapped by one occu-
pancy app per room, filtering the sensor data and providing a
boolean value as output. A lighting control app then combines
these occupancy resources with the control resources of the
lighting system of each room and automates them for energy
savings. Such a chain of apps could be continued by a energy
usage app for example. Ac apps can also have sub-resources
to provide structure for the exported data:
var threshold = 0;
// a sub-resource "/config"
var sub1 = new AppResource("config");
app.root.add(sub1);
// that accepts PUT requests
sub1.onput = function(request) {
// to configure the threshold

threshold = request.payloadText;
};

// a sub-resource "/occupancy"
var sub2 = new AppResource("occupancy");
app.root.add(sub2);
sub2.onget = function(request) {
// that returns true or false depending on a given value

request.respond(2.05, value > threshold ?
"true" : "false");

};

B. Runtime Container

IoT scripts require a novel runtime container that is more
flexible and easier to use than enterprise application servers. In
analogy to the GUI elements of a browser, which are focused
on user interaction with event-handlers like onclick, our
runtime provides IoT-specific elements such as resources that
have onget and onpost handlers, and an app object API in-
stead of window for facilities such as app.setTimeout()
or app.getNanoTime(). In our design, this container is
an app server that allows for dynamic installation, updates,
and removal of scripts in a RESTful manner: /install
accepts POSTed scripts, adds and stores them in its re-
source tree under /installed, and reports back the new
Location via the corrsponding header option. The same
Actinium app might be required several times, for instance
on a per-floor or per-room basis. Thus, we distinguish be-
tween installed apps, which is the code, and their instances,
which are created under /instances by POSTing an indi-
vidual configuration to an /installed/<app> resource.
Scripts can also be stopped or running. In the latter case,
they are available under /running with their instance
name. The full URI of the previous ‘occupancy’ resource
would thus look like coap://app-server.example.
com/running/occ-room1/occupancy

C. Mashups

The concept of Web mashups is to combine different
Web services to provide a service of higher value. Mashups
are light-weight applications that are easy to create, provide
flexible solutions, and generally leverage the high productivity
of scripting. These are properties that are ultimately required
for the IoT, where each user is associated to a plethora of



heterogeneous devices. Due to the connection to the physical
world, powerful applications can already be created by just
combining and evaluating sensor or status information, and
instantaneously triggering events for actuation or storing the
results for data mining.

To mash up devices, apps must take the client role. A
WebSockets-like API would be an option, but it is for arbitrary
data traffic and does not follow a RESTful design. We provide
the CoapRequest object API, which is designed similar to the
XMLHttpRequest object API [31] of AJAX:
var req = new CoapRequest();
// request the PIR sensor resource of a mote via CoAP
req.open("GET", "coap://mote1.example.com/sensors/pir",

false /*synchronous*/);
// with a application/json response
req.setRequestHeader("Accept", "application/json");
req.send(); // blocking
// and log it to the console after send() returns
app.dump(req.responseText);

Due to the resource design of Actinium apps, they are
able not only to mash up services of devices, but also of
other apps using similar interfaces. The runtime API also
supports the normal XMLHttpRequest to include traditional
Web services in the mashups. The following snippet contacts
a default Contiki border router, which usually hosts an HTTP
Web server to list the available routes to connected nodes:
var xhr = new XMLHttpRequest();
// GET "/" with a list of all LLN neighbors and routes
xhr.open("GET", "http://br.example.com/", false);
xhr.send();
// and retrieve all LLN node addresses via regular expr.
var addresses = xhr.responseText

.match(/[0-9a-z\:]+(?=\/128)/g);

Both request objects also support asynchronous communica-
tion. Thus, an app can also send multiple requests in parallel,
which enables interleaving of long-lasting requests to a group
of nodes. The responses are then handled by a callback func-
tion implementing onload. A distinctive feature of CoAP are
unreliable requests, which can simplify continuous polling. To
choose between non-confirmable messages and confirmables,
an additional boolean is passed to open (the default value is
true, which means confirmable, i.e., reliable requests):
// define the callback of an existing CoapRequest
req.onload = function() {

if (this.responseText=="false") switchOffLights();
};

// and a timeout with a timeout callback
req.timeout = 5000; // in ms
req.ontimeout = function() {

app.dump("Request timed out!"); // to console
};

// and send the an asynchronous, non-confirmable request
req.open("GET", "coap://app-server.example.com/

running/occ-room1/occupancy", // other app
true /*asynchronous*/, false /*non-confirmable*/)

;
req.send(); // non-blocking
// and continue execution immediately

A valuable feature of CoAP is observing resources [13],
which is initiated with the Observe header option. These
native push notifications can be used similarly to HTTP’s
chunked transfer (streaming) in AJAX. The onprogress
callback will inform the apps every time an update is received:

var req = new CoapRequest();
// define the callback for notifications
req.onprogress = function() {
// unlike XHR, only contains payload of last message

update(this.responseText);
};

// request is DONE, i.e., the observe relationship ended
req.onload = function() {

app.dump("Observing terminated"); // to console
};

req.open("GET", "coap://mote1.example.com/sensors/pir",
true /*asynchronous*/, true /*confirmable*/);

req.setRequestHeader("Observe", 0);
req.send(); // non-blocking

IV. SECURITY CONSIDERATIONS

The IoT is about connecting the virtual to the physical
world. As such, it requires security at different levels: First,
applications from different providers, running for different
users in the same runtime, must not leak sensitive information
or be harmful to one another. Second, communication with
the devices must be secure, so that sensitive information is
authenticated and/or exchanged confidentially. This section
reviews how we handle these security issues in our design.

A. Securing Application Execution

As with operating systems, users have to fully trust the
application server. This as prerequisite, trust into individual
applications can be relaxed by sandboxing and enforcement
of certain policies. Our design provides three mechanisms to
this end:

1) Isolated Apps: It is crucial that there is no unintended
interference between applications. In particular, errors occur-
ring inside an Actinium app must not influence the behavior
of other apps. Our runtime addresses this requirement by
holding each app within a separate sandbox. The only way
for the scripts to communicate with each other is through their
RESTful interfaces, either locally or over the network.

2) Policies: Keeping apps in a sandbox also enables the
container to have strong control over them. By default, there
are no restrictions in terms of when and how they are allowed
to access other resources or to be accessed. An end-user,
however, might want to define such restrictions, for instance
prohibit activation of the television during night or disallowing
apps to access local cameras. Our container allows for the
definition of such boundaries and guarantees compliance. By
providing read-only access to the policies, applications can use
defensive programming to avoid relentless trials and crashes.

3) Monitoring: Finally, the sandbox wrapper eases the
monitoring of the scripts. The runtime records traffic statistics
including the amount of transferred data. In addition, it can
monitor the CPU time specific threads consume. If the runtime
container stresses the CPU, end-users can check which app
causes the high load. Furthermore, they can check whether
the runtime is congested by many incoming requests or actual
misbehavior and only stop the script if needed.

B. Securing Communication

It is important to guarantee that only authorized applications
and users interact with a given device, preventing malicious



users from getting unauthorized information, or worse, trig-
gering unwanted actions with unpredictable impact on the
physical world. Following the open standards, we base our
security architecture on the DTLS protocol [27], an adaptation
of TLS for UDP providing CoAP with end-to-end integrity,
authentication, and confidentiality. There are two aspects for
integrating this security model into our architecture:

1) Authenticating Applications: Central questions for appli-
cation authentication are when, how, and to whom keys and
certificates should be distributed. We argue that the traditional
model of the Internet, where applications (e.g., Web sites or
smart phone apps) are only signed by the providers, is not
suitable for the IoT. Usually, authenticated applications may
access any device and users do not want to grant access to
their things based on the application designers’ choices. Thus,
we propose a model in which the users sign each configured
instance of an application instead of providers signing the
distributable code. Each user has a personal certificate that
is uploaded to the owned devices. This upload can be secured
using a pre-shared secret shipped by the manufacturer with the
device. For each Ac app that is deployed by the user, a key pair
is generated to produce an app certificate, which is signed by
the user. Actinium can then authenticate the script to the device
through its certificate when establishing the DTLS session. The
device accepts requests by apps only if its certificate is signed
by one of the authorized owners.

2) Providing Data Integrity and Confidentiality: Another
concern in the IoT is to check the integrity of data originating
from devices and to guarantee confidentiality while transport-
ing it. This can be done following the same scheme as on
the Internet, i.e., by distributing a certificate and a private key
to each device. DTLS, as TLS, allows authentication of both
parties during the session establishment. By using this feature,
an application can be guaranteed about the identity of the data
source, and can send and receive data confidentially through
any network.

Experiences from TLS, however, show that proper, user-
friendly tool support is required to make a certificate-based
security model work. Thus, corresponding mechanisms should
be provided with a runtime container.

V. IMPLEMENTATION

To the best of our knowledge, there are five comprehensive
open-source implementations of CoAP available: libcoap5

and Erbium6 written in C, evcoap7 in C++, Californium8

and JCoAP9 in Java, and Copper10 in JavaScript. The latter
sounds promising for scripting, however, it only implements
the client role and is bound to Mozilla’s XPCOM API, as it
is a Firefox add-on. From the remaining options, Californium
implements all required features, such as observing [13] and

5http://sourceforge.net/projects/libcoap/
6http://contiki.git.sourceforge.net/git/gitweb-index.cgi
7https://github.com/koanlogic/webthings/tree/master/bridge/sw/lib/evcoap
8https://github.com/mkovatsc/Californium
9http://code.google.com/p/jcoap/
10https://github.com/mkovatsc/Copper

blockwise transfers [2], and provides a convenient framework
to implement server functionality. Thus, we chose Californium
together with Mozilla’s Java-based Rhino11 JavaScript engine
to create Actinium, our IoT application runtime container.

The current version of Californium has a ‘single thread’
model, though, which is impractical for autonomous apps that
can issue blocking requests themselves. Thus, we extended the
request dispatcher with separate event queues for each running
app, which are executed in their own threads. These queues
are also used for JavaScript’s event-driven execution model,
i.e., they also hold the timeout and interval events.

AJAX’s XMLHttpRequest is not part of ECMAScript [9]
and hence not supported by Rhino. We used the E4XUtils
extension library for ECMAScript for XML (E4X) available
from IBM12 to include this API. Our CoapRequest object API
is backed up by custom Java code that wraps Californium’s
client functionality. The new working draft of the XMLHttpRe-
quest Level 2 specification states that “some implementations
support protocols in addition to HTTP and HTTPS” [32]. As
the functionality, however, slightly differs from CoAP and the
name of the object would become even more confusing, we
decided for separate APIs. In future work, we plan to integrate
a unifying API that better suites the REST abstraction and is
free of the XML legacy.

As complex applications shall be built by mashing up
other apps, there is no container format such as an JAR-like
archive. Each app is a plaintext script, which is persisted in
a single file and loaded into a wrapper object for execution.
The wrappers also implement the sandboxing described in the
previous section.

The secure communication is the only part currently not
implemented by Actinium, as at the time of writing, no imple-
mentation of the coaps scheme nor DTLS 1.2 was available.
We therefore leave the security evaluation to future work.

VI. EVALUATION

A. Setup

In our experiments, the app server is running on a 64-
bit Windows 7 Workstation with an Intel Core2 Q9400
@2.66GHz, 8GB RAM, and JavaSE-1.6. The network con-
figuration, which utilizes our campus IPv6 infrastructure, is
depicted in Figure 3. To be able to easily sniff the transit traffic,
the border router is connected to a Laptop for the experiments.

For the LLN, we use a pre-release of Contiki 2.613 with
the rpl-border-router running on a Tmote Sky14 with DMA
enabled for the serial line and the Erbium [18] server on
Econotags15. As we focus on the app server performance, we
configured the LLN with a best case scenario for applications:
no radio duty cycling for minimal latency. In a real-world
deployment, latency will have to be traded for battery lifetime.
An energy evaluation of CoAP over a radio duty cycling layer

11http://www.mozilla.org/rhino/
12http://www.ibm.com/developerworks/webservices/library/ws-ajax1/
13http://sourceforge.net/projects/contiki/
14http://www.sentilla.com/files/pdf/eol/tmote-sky-datasheet.pdf
15http://redwirellc.com/store/node/1
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Fig. 3. The border router has a distance of three hops to the app server.
As the bottleneck is the LLN, we configured it with a best case scenario for
applications: a single-hop star topology without radio duty cycling.

can be found in [18]. Yet, the LLN underlies realistic Wi-
Fi interference, as we used 802.15.4 channel 21 with several
surrounding access points on channels 1, 5, 9, and 13.

B. Latency Baseline

We evaluated the latency overhead that is introduced by the
Rhino scripting environment and our CoapRequest abstraction.
For that, we compare the round-trip time (RTT) of a JavaScript
request over a native request in Java and the network latency
measured with Windows’s ping tool. Each measurement was
executed 1000 times with a IPv6 packet size of 80 bytes. The
results summarized in Table I only show the latency for the
apps in client role, but the resource handlers for the sever role
have the same properties through reciprocity.

The average CoAP RTT when including a single LLN hop
behind the border router is already 46ms. Thus, the overhead
of 1.282ms added by the scripting environment is negligible.
Especially when considering that to gain a longer lifetime,
battery-powered IoT devices will employ radio duty cycling,
which increases the underlying network latency further. LLNs
usually aim for an idle duty cycle (i.e., idle listening only
without transmissions or interference) well below 1%. Con-
tikiMAC, for instance, achieves 0.6% with a channel check
rate of 8Hz, which can add an extra of up to 2·125ms=250ms
to the RTT for a single hop.

C. REST Handler Performance

With a negligible network overhead for the scripting ab-
stractions, only the performance of JavaScript could become
a showstopper. So, we evaluated the execution times of
Actinium’s REST handlers with measurements that directly
continue from the baselines identified in the last sub-section.
We compare the Rhino JavaScript runtime of Ac to a native
Californium handler in Java and the runtime of node.js16, a
platform that enables server-sided JavaScript for HTTP-based
applications leveraging Chrome’s V8 JavaScript engine.

To assess different aspects, we used three different bench-
marks that are also included in the Actinium repository. Each
one is implemented as request handler and measures the
execution time only, i.e., without runtime start-up and the
like. The input parameters are chosen so that the different
complexity classes (O(n2), O(n · log(n)), and O(n), resp.)
produce comparable execution times of up to 1.5 seconds.

16http://nodejs.org/

TABLE I
BASELINE TIMINGS

Minimum Maximum Average Overhead

Ping to BR 16ms 62ms 37ms —

Ping to node 32ms 77ms 46ms +9ms

CoAP/Cf RTT 34.173ms 77.587ms 47.650ms +2ms

Actinium RTT 32.901ms 97.088ms 48.932ms +1ms

The timings were measured over 4 hops (1 LLN hop) with 1000 requests per
measured system (note that Windows ping only provides 1ms resolution). The
smaller minimum for the Actinium RTT is caused by random effects along the
stack such as the IEEE 802.15.4 CSMA backoff and the Contiki scheduler.

1) Fibonacci Benchmark: The Recursive Fibonacci algo-
rithm causes a large number of function calls and thus shows
how efficient the runtime systems manage deeply nested func-
tion calls. Figure 4 shows the outcome as assumed: Java is 3.13
times faster than node.js, which is already 3.76 times faster
than Rhino because of its efficient C++-based V8 runtime.

2) Quicksort Benchmark: The next benchmark sorts an
array of double-precision floating point numbers using the
Quicksort algorithm, which shows how efficient the runtime
systems handle memory access. Unlike the Fibonacci bench-
mark, the performance factors are not constant over the input
parameters. Compared to Java’s average speed-up of 18.2,
both JavaScript runtimes degrade with increasing array sizes.
node.js scales a little worse, but on average it still performs
7.13 times better than Rhino (cf. Figure 5).

3) Newton Square Roots Benchmark: Newton’s Square
Root is a fixed-point algorithm that iteratively computes the
square root for a number. Since the result does not matter,
we arbitrarily define eight iterations and vary the number
of calculated roots. With this algorithm, we compare how
efficiently the runtime systems executes arithmetic operations.
In Figure 6, the speed-up factors of 3.25 and 4.14 for Java and
node.js, respectively, are close and clearly show the strength
of scripting for this kind of computation.

On the one hand, the app server evaluation shows that
Rhino is not a high-performance runtime. On the other hand,
arithmetic and logical operations perform comparatively well
in JavaScript. This shows that scripting is well suited for the
targeted use-case, where RESTful device resources are mashed
up to create IoT applications. Memory-intensive tasks like
persistent logging or data mining can be outsourced to stand-
alone services with a RESTful API (e.g., a RESTful database).
With the new InvokeDynamic bytecode instruction in Java 7,
the JVM also provides better support for dynamically typed
languages.17 The next version of Rhino is thus expected to
provide a performance similar to Chrome’s V8.

D. Concurrent Apps

Actinium supports multiple apps running and communi-
cating at the same time through message multiplexing. As
spawning new threads is not a problem for a back-end system,

17http://jcp.org/en/jsr/detail?id=292
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An interesting result is to confirm that JavaScript has its strengths in pure
computations and node.js even outperforms Java.

we have to investigate the network traffic to reason about
concurrently running scripts. On our test system, the rate of
sending 80-byte requests from the JavaScript runtime con-
verges to about 2500 messages per second. The bottleneck lies
of course in the destination LLN, which can become congested
with too many messages. We conducted an experiment where
ten asynchronous requests are sent to ten different nodes
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Fig. 7. The overall response time of 10 responses for 10 requests sent with
different rates. The graph also shows the measured minima, in which case no
interference, thus no restransmissions, occurred. Note that the high average
and standard deviation is caused by CoAP’s binary exponential backoff for
retransmissions, which starts with a random value between 2 and 3 seconds
by protocol default.

in one LLN in parallel. We recorded the overall response
time, i.e., the RTT between the first outgoing request and
the last incoming response, and varied the outgoing rate
of messages. For this, we used an Ac app18 that simply
calls app.sleep(delay) between sending the requests
and measures the timing with app.getNanoTime(). The
experiment was repeated about 500 times, whereas we filtered
1.8% of the runs because they did not complete within our
overall request timeout of 20s.

Figure 7 shows a drastic increase in latency around 45
requests/s. This is where the LLN becomes congested and link-
layer retransmissions exceed the channel capacity. Thus, an
application-layer retransmission is required, which in a default
CoAP configuration occurs after two to three seconds and is
repeated after twice the previous interval until four retrans-
missions. Without interference, rates beyond the 45 requests/s
mark can also achieve overall RTTs below 500ms. Also note
that with knowledge of the LLN and the applications, a lower
average can be produced by tweaking the CoAP parameters.

We used these results to implement a rate limitation layer
for Californium. This only covers the scenario of one app
server for a single, known LLN. In a real-world deployment,
the traffic shaping should be integrated into the border routers,
as the channel properties apply per LLN and Actinium might
use multiple deployments. Furthermore, caching should be
employed at the runtime container and at the border of
each LLN. Caching has the same result as Nano-CF’s packet
aggregation and concatenation [12], reducing the traffic in the
LLN, but better decouples applications and infrastructure.

18The app has 21 Logical Source Lines of Code (LLOC) for the measure-
ment, and 37 LLOC in total including RESTful facilities to retrieve the node
addresses from the border router, set the delay, and start the measurement.



VII. CONCLUSION

The goal of this paper is to make programming of Internet
of Things applications significantly easier. We propose an ar-
chitecture for the IoT that unifies the Web of Things idea with
the requirements of constrained mote-class devices. Our fully
RESTful runtime container Actinium (Ac) allows for dynamic
installation, update, and removal of scripts. These apps are
modelled as resources themselves and can provide parameters,
status information, and results through RESTful interfaces.
Complex applications are implemented by mashing up such
resources, provided directly by ‘things,’ other apps, or classic
Web services. Security is provided through traditional Internet
standards, but with a paradigm change in how applications
are signed. Ac enables the integration of low-end sensors and
actuators into the Internet, whereas we see the IoT more as an
Internet with Things rather than an Internet among Things.

The evaluation of our working prototype shows that the
performance of the runtime container is relaxed by the latency
of low-power networks, which connect ‘things’ to the Internet.
As the scale of the IoT is expected to be immense, though,
the runtime must handle several applications, each orches-
trating many devices, potentially in multiple networks. For
computational tasks, JavaScript can outperform a native Java
implementation. Thus, scripting is a viable solution for the
mashup programming model, which connects different REST
resources through logic and arithmetic operations to provide
services of higher value.

Our proposed architecture can kindle end-user program-
ming for devices in a new way, as scripting even addresses
beginners. Our security model based on user-signed apps
allow users to build trusted IoT applications for their ‘things.’
An adoption of our CoapRequest object by Web browsers
could fully integrate things into the Web. For applications that
require more user interaction, the runtime container could also
be a desktop widget, powered by a default browser engine. A
continuation of our design will focus on a generalization of
an object API for RESTful scripting, which combines CoAP
and HTTP, or any other future RESTful protocol.
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