
1

Load-Balanced Data Collection
through Opportunistic Routing

Mathieu Michel∗, Simon Duquennoy†, Bruno Quoitin∗, Thiemo Voigt†‡
∗Computer Science Department, University of Mons, Belgium

firstname.lastname@umons.ac.be
†SICS Swedish ICT AB, Sweden
{simonduq,thiemo}@sics.se
‡Uppsala University, Sweden

Abstract—Wireless Sensor Networks performing low-power
data collection often suffer from uneven load distribution among
nodes. Nodes close to the network root typically face a higher load,
see their battery deplete first, and become prematurely unable
to operate (both sensing and relaying other nodes’ data). We
argue that opportunistic routing, by making forwarding decision
on a per-packet basis and at the receiver rather than the sender,
has the potential to better balance the load across nodes. We
extend ORPL, an opportunistic version of the standard routing
protocol RPL, with support for load-balancing. In our protocol,
ORPL-LB, nodes continuously adapt their wake-up interval
in order to adjust their availability and attain a deployment-
specific target duty cycle. We implement our protocol in Contiki
and present our experimental validation in Indriya, a 93-nodes
testbed. Our results show that ORPL-LB reduces significantly
(by approximately 40%) the worst node’s duty cycle, with little
or no impact on packet delivery ratio and latency.

I. INTRODUCTION

Reducing the energy consumption is one of the main
requirements of Wireless Sensors Networks (WSNs). Over
the last years, many MAC and routing protocols have been
proposed to address the trade-off between energy consumption
and performance (e.g., in delivery ratio and latency). State-of-
the-art low-power routing solutions rely on a tree topology,
with e.g., CTP [1] for data collection networks or RPL [2],
the standard IETF protocol for low-power IPv6 routing.

Tree-based routing protocols such as CTP do not spread the
load evenly among all nodes in the network [3]. Nodes with a
large sub-tree typically have a higher energy consumption, will
see their battery deplete first, eventually leading to network
partitions. Load balancing aims at spreading the load evenly
among the nodes in order to postpone as much as possible
the first occurrences of battery depletion. A properly balanced
network will keep full connectivity longer, and will also result
in lower maintenance costs, allowing to replace a maximum
of batteries or nodes at the same time.

Load-balancing routing protocols such as LB-RPL [4] op-
erate by building a topology that minimizes forwarding hot-
spots, distributing the traffic load as evenly as possible among
the nodes. A problem with this approach is that depending on
the current topology, every node is responsible for forwarding
any traffic coming from its sub-tree. Variations in the traffic

load, link quality, and other factors affecting energy consump-
tion can therefore not be accommodated for.

We argue that opportunistic routing offers a number of
benefits when it comes to load balancing. In opportunistic
routing protocols such as ORPL [5], the next hop is selected
during packet transmission based on receivers’ availability,
rather than before transmission based on the sender’s routing
table. Having the decision made at the receiver means the latter
can easily decline traffic whenever it is too loaded, and vice
versa. Additionally, because the next hop is selected on a per-
packet basis, it becomes easy to spread traffic bursts towards
the sink over multiple next hops.

In this paper, we extend the existing protocol ORPL with
load-balancing capabilities. Our protocol ORPL-LB adapts the
wake-up interval of the nodes depending on their current
and past energy and traffic conditions. The wake-up interval
directly affects the node’s availability as a forwarder, a key
factor in the node’s future load energy consumption. Each
node selects its wake-up interval adaptation based on the
comparison of its own current duty cycle (used as a proxy for
energy consumption) with a network-wide target duty-cycle.
The target duty cycle is either fixed statically or at runtime,
offering a balance between performance and lifetime.

Our experimental results in a 93-nodes testbed [6] show
that ORPL-LB reduces on average the energy consumption by
approximately 40% for the energy hotspots with no impact on
the reliability and a negligible impact on the network average
energy consumption and latency.

The paper is organized as follows. First we introduce in
Sec II some background notions including ORPL and its
concepts. Then we motivate the need of load balancing for
ORPL in Sec III. Our load balanced version of ORPL is
presented in Sec IV and then evaluated in Sec V. Sec VI
presents related work before Sec VII concludes.

II. BACKGROUND

A. Duty cycling and ContikiMAC
Several radio duty cycling MAC protocols [7] have been

proposed in the literature to address specific WSN require-
ments and constraints such as low energy consumption of
battery operated nodes or limited bandwidth. Duty-cycled
MAC protocols aim at reducing the energy consumption by



2

having nodes keep their radio-transceiver off most of the time.
We refer to the portion of time where the node has its radio
turned on as duty cycle. Typically, to reach lifetimes in the
order of several months or a few years, radio duty cycled
networks aim for duty cycles in the range of a few percents,
sometimes below one percent.

ContikiMAC [8] is an asynchronous duty cycling protocol.
Nodes running ContikiMAC sleep most of the time and wake
up periodically for a short time to check the medium. The node
quickly performs two successive Clear Channel Assessments
(CCA) to determine, based on the radio signal strength, if there
is an incoming transmission. If the CCAs succeed (channel
clear), the node goes back to sleep immediately. If the CCAs
fail (channel busy), the node stays awake and a procedure
called a fast sleep optimization tries to determine if the
received signal is due to noise or to an incoming frame. In
case of noise the node goes back to sleep.

To send a packet, a node running ContikiMAC repeatedly
sends the full data packet until an ACK is received or the
transmission times out after a duration equal to a wake-
up interval. The packet destination field allows non-targeted
receiving nodes to go back to sleep early in the packet
reception.

In addition, a mechanism called “phaselock” allows a node
running ContikiMAC to learn the wake-up schedule of a
neighbor. By allowing a node to achieve a transmission with
on average only two packets (the first being used to announce
the transmission), the phaselock mechanism decreases the time
and the energy spent in TX mode. A side benefit of the phase-
lock is a reduction in channel utilization and therefore in the
risk of collisions.

B. RPL
Based on CTP [1], RPL is a distance vector protocol for low-

power and lossy networks using a tree-like topology, named a
DODAG (Destination Oriented Directed Acyclic Graph). This
graph is built based on the notion of rank which expresses
the cost needed by a node to reach the root (see Fig 1). This
design makes RPL particularly efficient for collect-only traffic
patterns. Any-to-any traffic can also be handled – albeit at
higher cost – by routing via common ancestor (see Fig 2).

In a data collection scenario, nodes always transmit to the
same destination: the network root which acts as sink. The
simple rooted topology of RPL allows each node to obtain
a preferred parent acting as a next-hop to reach the root. A
node sends a data packet to the sink through its preferred
parent. This parent will then forward the packet through its
own preferred parent until the packet reaches the sink. Looking
at Fig 1, a packet sent by the node G will reach the sink via
the nodes D and then B.

C. ORPL
ORPL [5] is an opportunistic extension of RPL based

on ContikiMAC. In ORPL, the forwarding decision is made
during transmission rather than before, using anycast trans-
missions. Transmitting nodes send the data repeatedly until

S

A B C

D E

GF H

rank: 0

rank: 1rank: 1 rank: 1

rank: 2 rank: 2

rank: 3 rank: 3 rank: 3

rank: 1

rank: 2 rank: 2 rank: 2

rank: 3 rank: 3

rank: 4 rank: 4 rank: 4

Fig. 1. RPL builds a DODAG topology

S

A B C

D E

GF H

rank: 0

rank: 1rank: 1 rank: 1

rank: 2 rank: 2

rank: 3 rank: 3 rank: 3

rank: 1

rank: 2 rank: 2 rank: 2

rank: 3 rank: 3

rank: 4 rank: 4 rank: 4

Fig. 2. RPL routes any-to-any traffic through a common ancestor: In this
case node F sends its packets through the sink S to reach node H

receiving an ACK from any node closer to the destination. The
set of the neighbors able to offer routing progress to a given
node is called its “forwarder set”. Therefore, the first node in
the “forwarder set” that wakes up and successfully decodes the
packet will acknowledge the packet and route it further. Like
RPL, ORPL uses a DODAG topology, and supports both data
collection and any-to-any traffic.

In data collection scenarios ORPL is similar to the ORW
protocol [9], performing opportunistic routing along a gradient
anchored at the root. Any-to-any transmission is supported by
first routing the packet upwards to any common ancestor and
then downwards to the destination.

III. MOTIVATION: THE NEED FOR LOAD BALANCING IN
ORPL

We argue that ORPL has the potential to better distribute
the traffic among the nodes, because the routing decision is
made at the receiver, on a per-packet basis. However, ORPL
alone, without an explicit load balancing policy cannot avoid
energy hotspots.



3

S

A B

C D

receives 100%
of the traffic

generates 50%
of the traffic

generates 50%
of the traffic

50% 25% 25%

Fig. 3. Without LB and due to a higher number of descendants, node A
would handle 75% of the traffic compared to only 25% for node B.

Fig 3 illustrates a case where the opportunistic nature of
ORPL is not enough to spread the load evenly. In this topology,
node A is a forwarder for C and D while B has D as its
only child. By using ORPL, node D is free to use A or B as
forwarders. We assume that the traffic is uniformly distributed
among all parents. In this scenario, with ORPL, A is an energy
hotspot, as it is a forwarder for 75% of the traffic.

A load-balanced extension of ORPL would aim at having
B take more traffic from D, allowing node A to decrease its
load.

There is a strong correlation between the energy consump-
tion of a node and its network load. Indeed, with respect to
their distance to the sink, not all nodes handle the same amount
of traffic. While the leaves only have to transmit their own data
packets, nodes closer to the sink also have to forward to the
sink all the traffic originating from their descendants.

To characterize this behavior we have performed some
ORPL experimentation in the Indriya testbed (93 Tmote Sky
nodes). The results of a representative experiment are presented
below. Fig 4 shows the packet load at every node, in an RPL
topology, w.r.t. its average hop count to the sink. Given the
nodes do not always used the same parent to reach the root,
the hop count cannot be reduced to an absolute value and is
then presented as the average number of hops required over
time to reach the root. It can be observed that the nodes closest
to the root/sink have the highest forwarding count, while the
leaves have fewer packets to handle.

It is common to observe that nodes closer to the sink
consume more energy than the leaves which handle less traffic
[4]. Note that surprisingly, as illustrated by Fig 5, the nodes
at a 1-hop distance from the sink, despite carrying a higher
traffic load, consume less energy than the hops at a 2-hops
distance [3]. This is explained by the fact that in most real-life
deployment, the root/sink has a permanent power supply and
then can stay always on. Hence, 1-hop nodes do not have to
wait for their successor to wake up.

0 1 2 3 4 5 6

Hop Count

0

50

100

150

200

250

300

Fo
rw

a
rd

in
g

C
o
u
n
t

Fig. 4. Correlation between the average distance (in hops) from the sink and
the network load: the lower the distance higher the load.

0 1 2 3 4 5 6

Hop Count

0.0

0.5

1.0

1.5

2.0

2.5

3.0
D

u
ty

 C
y
cl

e
(%

)

Fig. 5. Correlation between the average distance (in hops) from the sink
and its energy consumption. Nodes closer to the sink have a higher energy
consumption than the leaves, except for the sink’s neighbor who benefit from
an always-on parent.

IV. DESIGN OF ORPL-LB

We introduce ORPL-LB, a load-balanced, opportunistic ver-
sion of RPL based on ORPL. The key idea in ORPL-LB is
to have the nodes adjust their wake-up interval continuously
to reach a target duty cycle. This target duty cycle can
be either pre-defined in the configuration or determined at
runtime. Increasing (resp. decreasing) the wake up interval
allows nodes to reduce (resp. increase) their duty cycle to reach
the target. By doing so, nodes that are lightly loaded will start
waking up more frequently, hear and forward more traffic.
As a result, their load will increase, alleviating overloaded



4

neighbors. Conversely, nodes with a high load will react to
their high duty cycle by increasing their wake-up interval. This
leads to a reduction of both their traffic load and baseline idle
consumption, helping them save energy in the future. This
approach is illustrated on Fig 3: in this topology A handles
75% of the traffic while B only 25%. By using load balancing,
node B would be able to decrease its wake-up interval, making
itself more available for D and then more likely to handle D’s
packets, allowing A to reduce its network load and duty cycle.

A. Duty Cycle Adaptation

In ORPL-LB, like in ORPL, all data-plane transmissions
are anycast. The sender node transmits continuously until any
of its neighbors wakes up, receives the packet, decides to
forward it and acknowledges it. In such design, nodes can
adjust their wake-up interval without the need to signal it to
their neighbors. Waking up more often will simply result in
more opportunities to forward; Sleeping more allows a node
to reduce its load instantly.

The wake-up interval evaluation is done at regular interval of
2 minutes. To avoid excessive energy consumption, the wake-
up interval is bounded by minimum (125 ms) and maximum
(1000 ms) values. These values have been selected to avoid a
waste of energy due on one hand to too frequent wake-ups and
on the other to longer transmissions [5]. Indeed the maximum
wake-up interval bounds the strobe length for anycast and
broadcast transmissions, meaning that a node with a high
wake-up interval will transmit longer strobes.

Every node starts with the ORPL default wake-up interval
(500 ms) [5].

With the knowledge of a target duty cycle, nodes adjust
their wake-up interval periodically by comparing the target
with their own average duty cycle recorded since startup. The
wake-up interval is only adapted if the distance to the target
duty cycle exceeds a pre-defined threshold ht. In addition to
this average duty cycle, the node computes its current periodic
duty cycle to determine how to adapt the wake-up interval.
More specifically, every node follows the following decision
process periodically:

1) The node computes its current average duty cycle from
the beginning DCavg .

2) The node compares DCavg to DCtarget and makes one
of the following decisions:
• If DCavg < DCtarget+ht the node will decrease

its wake-up interval;
• If DCavg > DCtarget−ht the node will increase

its wake-up interval;
• Otherwise it keeps its wake-up interval un-

changed.
With the purpose to reduce oscillations, a weighted moving

average, accounting for both current periodic1 (DCcur) and
past duty cycle values, is computed:

DCewma = α×DCcur + (1− α)×DCewma

1Over the last 2-minutes period

The DCewma value is used to make the decision on how
much the wake-up interval must vary. By using a weighted
moving average the nodes can track their recent duty cycle
variations. The objective is, among others, to take into account
cases where the average duty cycle DCavg is higher (resp.
lower) than DCtarget but the node has already increased (resp.
decreased) its wake-up interval to a value allowing the node
to obtain current duty-cycle DCcur close to the target.

Once the DCewma has been computed the node has to
decide how much the wake-up interval has to be modified.
This wake-up variation step WIstep is bounded by a maximum
value WImax step (125 ms) to avoid excessive variation. A
ratio DCratio bounded is computed between the DCtarget and
the DCewma and used as a multiplier to WImax step to
compute the increase:

DCratio =
DCewma−DCtarget

DCtarget

DCratio bounded =

{ −1 DCratio < −1
DCratio DCratio ∈ [−1, 1]
1 DCratio > 1

WIstep = DCratio bounded ×WImax step

This method is illustrated by the following example, where
the following values are used:
• DCtarget = 1%
• DCavg = 0.90%
• DCewma = 0.80%

Realizing that DCavg is lower than DCtarget, a node will
decide to decrease its wake-up interval. To determine how to
decrease the wake-up interval it will first compute the DCewma

. With a value of −0.2 obtained for the DCratio bounded

(DCratio = -0.2) and considering a WImax step of 125 ms,
the current wake-up interval would be decreased by 25 ms.

B. Wakeup Interval – Traffic Load Feedback Loop
The ORPL-LB load balancing mechanism could face two

main problematic corner cases:
1) Despite waking up more frequently, a node with very

few descendants is limited in its ability to increase its
traffic load.

2) Despite waking up less frequently, a node located at a
physical bottleneck (on the path towards the root for
a large sub-tree) is limited in its ability to reduce its
traffic load.

The first situation leads to a waste of energy, in a vain
attempt to handle more traffic. The second situation causes
an unnecessary increase of latency for the node’s sub-tree due
to a lower availability of their common ancestor.

To overcome these limitations, we consistently monitor the
feedback loop between wake-up interval and traffic load. We
aim at making sure that adjustments of the wake-up interval
affect the node’s traffic load as expected.

Every K (= 5) wake-up interval evaluation periods each
node computes the following:
• the current average wake-up interval WIcur from begin-

ning.



5

• the actual average packet forwarding rate Pktcur from
beginning.

These two values are compared with the results observed
for the previous period (WIprev and Pktprev) as follows:
• The node compares WIcur with WIprev:

1) If WIcur > WIprev , we expect that given the
node increases its wake-up interval its traffic load
will decrease:
◦ If Pktcur < Pktprev: everything keeps un-

changed.
◦ If Pktcur ≥ Pktprev: the load balancing is

not effective, the previous wake-up interval
WIprev is restored.

2) If WIcur < WIprev , we expect that given the
node decreases its wake-up interval its traffic load
will increase:
◦ If Pktcur > Pktprev: everything keeps un-

changed.
◦ If Pktcur ≤ Pktprev: the load balancing is

not effective, the previous wake-up interval
WIprev value is restored.

C. Target Duty Cycle Definition

In some deployment scenarios, we expect the target duty
cycle to be fixed offline, at design time, reflecting the appli-
cation lifetime requirement. Our experience with ORPL-LB
is that from initial experiments without load-balancing it is
possible to identify a realistic interval for the target duty cycle.
However, we can also see the need for an automatic, runtime
adaptation of the target duty cycle.

To address this issue we propose the following methodology
to automatically and dynamically find the optimal value for
the DCtarget. The main intuition is to try to obtain the lowest
objective keeping the balance between the energy spent for the
transmission and for the wake-up procedure.

Fig 6 is a schematic illustration of the relationship between
the energy consumption of the nodes within a network running
ORPL and the length of their average wake-up intervals [5].
From this figure it appears that short average wake-up interval
within the network involves a high average duty-cycle caused
by too frequent wake-up forcing the nodes to spend a lot of
energy for the wake-up procedure (side A of Fig 6). Conversely,
a high average wake-up interval within the network results in
nodes spending more energy to reach a specific destination
(side B of Fig 6). Indeed, the number of strobes required by
ContikiMAC2 to reach a neighbor is bounded by the maximum
wake-up interval.

We look for the optimal balance between the energy spent
on wake-up and the energy spent for packets transmission.
This optimal point, which is illustrated on Fig 6 can be found
by the sink and then propagated through the network with the
following methodology.

2The opportunistic anycast transmissions within ORPL prevent the use of
the ContikiMAC phaselock mechanism to reduce the length of the transmis-
sion.

Wake-up interval (ms)

optimal point

A B

energy spent for TX

Duty Cycle (%)

energy spent 
for wake-up

Fig. 6. With ContikiMAC the average duty cycle depends on the energy
spent for transmission and wake-up. A higher wake-up interval results in more
energy spent for transmissions while a lower one involves an increased energy
consumption due to more frequent wake-ups.

The sink propagates the current duty cycle target DCtarget

through RPL DIO messages (periodic beacons). The sink starts
by disseminating a reasonably high value as target: DCtarget

= DCtargetMAX . In our case DCtargetMAX could be fixed
at 1% which is almost twice the average duty cycle observed
during previous ORPL experiments. With ORPL-LB, once a
high DCtarget received, a node will gradually reduce its wake-
up interval as a reaction of thinking being under-loaded. The
nodes will then spend more energy due too frequent wake-ups
than for transmissions.

Periodically, the sink decreases the propagated DCtarget

by a fixed value DCtargetSTEP (= 0.05%) until a significant
increase of the energy spent for transmission is detected.

Each node can evaluate its transmission energy consumption
via the Contiki’s energest module, which measures the time
spent by a node in the following states: LISTEN, RX and TX.
By including these data in a field added through the data packet
headers, the nodes are able to forward such information to the
sink without requiring any additional traffic.

By evaluating this information the sink is able to detect
traffic variation and in case of higher (resp. lower) transmission
cost to increase (resp. decrease) the target duty cycle to better
match the network situations.

The use of the DIOs and the fact that in collect-only
traffic pattern all the data frames are sent to the sink makes
this approach suitable for collect-only traffic pattern without
any additional overhead. This methodology is less suitable
for non-collect-only scenarios where the data packets are
not necessarily targeting the root. Providing to the root the
information about the energy spent would require a periodic
transmission of additional control packets from each node.

D. High Load Optimization for ORPL
In addition to the load balancing optimization we brought

the following enhancement to ORPL (-LB): Before sending an
acknowledgement and then try to forward a packet, a node will
first check the status of its transmission queues. If the queue
occupation is higher than a certain threshold, the node will



6

not acknowledge the packet, letting other, less saturated nodes
handle this packet. This optimization allows ORPL(-LB) to be
more efficient under high loads.

V. EVALUATION

In this section we assess ORPL-LB’s performance in pe-
riodic data collection scenarios. We evaluate its capacity to
extend the network lifetime by reducing the energy consump-
tion of hotspots. We compare these results with both RPL and
original ORPL. Unfortunately we cannot compare our protocol
against LB-RPL [4] which has only been evaluated through
simulations in NS-2 [10].

The evaluation focuses on the following metrics: duty cycle
(DC), latency and packet delivery ratio (PDR). The duty cycle
represents the portion of time spent with the radio turned on.
The latency measures the average end-to-end delay from the
source sending a packet to the destination receiving it. The
(end-to-end) packet delivery ratio is the ratio between the
number of application data packets received by the sink over
the number of application data packets sent.

A. Methodology

The Indriya testbed [6], which has already been used to
evaluate ORPL, has been selected as test environment. Indriya
is a testbed that currently consists of around 93 Tmote Sky
nodes distributed over three floors in office environment. Given
the unavailability of node 20 previously used as root to evaluate
ORPL [5], we have selected node 1 as root, also located in
the third floor, trying to maximize the network diameter. We
use the maximum transmission power (0 dbm) of the cc2420
radio transceiver, which leads to a diameter of five hops in our
experiments.

The application scenario is periodic data collection, where
every node sends a packet every 2 minutes on average,
resulting in a load of 0.76 packet per second at the sink. All
experiments are run for one hour, and the metrics are computed
after the first 10 minutes of the experiment, when the topology
has fully converged. Whenever averages are shown, they are
from at least three runs of the same experiment. In the case
of ORPL and ORPL-LB, we run experiments for almost two
hours, where the first hour runs the basic ORPL, and we enable
load-balancing to evaluate ORPL-LB in the second half. By
avoiding the randomization between two experiments due to
the staggered starting times of the nodes or random temporary
interference, this method allows us to get a fair comparison
between ORPL and ORPL-LB.

B. Dissection of an ORPL-LB Run

We start by analysing a single, representative run to better
understand the effect of load-balancing on ORPL.

Fig 7 shows the resulting per-node average duty cycle, with
and without load-balancing. By dynamically adapting nodes
wake-up interval, ORPL-LB allows to balance the duty cycle
more evenly among nodes. As a result, the highest duty cycle
drops from 1.73% to 1.18%; a decrease by 32%.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Avg duty cycle (%)

0.0

0.2

0.4

0.6

0.8

1.0

N
o
d

e
s

ORPL

ORPL-LB

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n
 F

u
n

ct
io

n
 (C

D
F)

Fig. 7. ORPL-LB allows to reduce the consumption of energy hotspots
compared to ORPL. While ORPL sees its hotspots reach a maximum duty
cycle of ∼1.75%, this value is reduced to ∼1.2% with ORPL-LB.

0 20 40 60 80
node ID

0

200

400

600

800

1000

W
a
ke

-u
p
 i
n
te

rv
a
l

Fig. 8. Average wake-up interval (+min/max) for each node after enabling
load balancing. The interval varies both between different nodes and with
time.

Fig 8 shows the average and min/max (error bars) wake-up
intervals obtained with ORPL-LB. As illustrated, the wake-ups
profiles are very heterogeneous and vary over time. Nodes that
are only one hop from the sink (mostly nodes with a low node
ID) can transmit at very low cost as the sink is always on.
The energy saved as a result is put by ORPL-LB into more
frequent wake-ups, further increasing the forwarding capacity.
Nodes further away from the sink have very heterogeneous
profiles. Whether they are leaf nodes, have many children, a
heavy or light traffic load affects their duty cycle, used by
ORPL-LB to set the wake-up interval.

Fig 9 shows different metrics as a timeline, in a 110 minute
experiment where load balancing is enabled around minute 55.
The metrics are computed after 10 minutes to ensure that
ORPL has converged. Overall, the system continues to operate
with comparable global performance after load-balancing is
enabled. Most importantly, we do not observe any oscillation
due to the operation of ORPL-LB. This is due to use of the
average duty cycle DCavg and the weighted moving average



7

duty cycle DCewma respectively to decide if a modification is
needed and to quantify this modification.

0

20

40

60

80

100

P
D

R
 (

%
)

0.0

0.5

1.0

1.5

D
u
ty

 C
y
cl

e
 (

%
)

0

200

400

600

800

W
a
ke

-u
p

 i
n
te

rv
a
l 
(m

s)

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

time (min)

0.0

0.2

0.4

0.6

0.8

La
te

n
cy

(s
)

Fig. 9. Impact of the activation (vertical line) of ORPL-LB after almost 1 hour
experiment on the following metrics: PDR, duty cycle, latency and wake-up
interval. Load balancing activation shows little impact on performance metrics
such as PDR and latency, but results in a slight increase in average duty cycle.

Using load-balancing leads to a slight increase of the av-
erage duty-cycle. This is the price to pay for more evenly
distributed load, which helps reducing the worst case duty cy-
cle. Moreover this higher average duty cycle can be explained
by a non-optimal DCtarget definition. Indeed the target duty
cycle has been arbitrarily fixed to 0.60% which is the average
duty cycle observed on previous ORPL experiments. One also
has to consider the pre-defined threshold ht to explain this
difference.

C. Comparison vs. ORPL and RPL
Tab. I summarizes the overall performance of RPL, ORPL,

and ORPL-LB. For ORPL, we set the wake-up interval to 500
ms, which we found to give the best results. For RPL, we
present results with an interval of 500 ms and 125 ms, as both
lead to a different trade-off between energy and latency.

At a 500 ms interval, RPL offers the lowest average duty
cycle of all, but also a latency 3 times higher than that
of ORPL, ORPL-LB, or RPL with 125 ms interval. At a
125 ms interval, RPL offers comparable latency with ORPL
and ORPL-LB, but with higher duty cycle and significantly

Metric RPL (500ms) RPL (125ms) ORPL ORPL-LB
Highest DC (%) 1.46 3.39 2.48 1.46
Avg DC (%) 0.47 0.92 0.57 0.63
Avg PDR (%) 97.95 97.45 99.67 99.78
Avg Lat (s) 1.42 0.52 0.41 0.46

TABLE I. EXPERIMENTS SUMMARY: highest duty cycle, average duty
cycle, average packet delivery ratio, average latency. COMPARED TO

ORPL, ORPL-LB IS ABLE TO REDUCE THE HIGHEST DUTY CYCLE BY
MORE THAN 40%.

lower delivery ratio. Overall, ORPL and ORPL-LB have an
interesting best latency-energy balance and are more robust.

As intended, ORPL-LB reduces the highest duty cycle in
comparison with ORPL, from 2.48% to 1.46%. Note that this
decrease by more than 40% comes with the side effect of a
slightly increased average duty cycle. Interestingly, the highest
duty cycle with ORPL-LB is similar to that of RPL with a 500
ms interval – but in such settings all other metrics are clearly
in favour of ORPL-LB, in particular a packet loss rate one
order of magnitude lower, and latency three times lower (see
Tab. I).

D. Network Lifetime
In this section we evaluate the impact of the reduction of

the highest duty cycles by ORPL-LB on the network lifetime
compared to classic ORPL. We consider the network lifetime
as the time during which the network is able to maintain the
PDR above a pre-defined threshold. The fact of the PDR drop-
ping below this threshold would be considered as unacceptable
in regards with the network obligations. For that purpose we
have designed a specific experiment where the nodes have a
pre-defined energy quota. When the energy spent (measured
as radio-on time) by a node exceeds a given threshold, the
node is considered as dead and then is unable to receive or
send any data packets. Based on the power consumption of the
most energy-efficient nodes across the different experiments,
the threshold has been calibrated to ensure that no node has a
more than 4 hours autonomy.

Fig 10 shows the gradual extinction of the nodes observed
during one particular (representative) experiment. The upper
part shows the number of nodes active at any time, while the
lower part shows the resulting delivery ratio, i.e. the ratio of
packets received at the sink over the total number of packets
that would have been sent, should all nodes be active.

Both ORPL and ORPL-LB result in longer lifetime than
RPL. RPL has been used with a wake-up interval of 125ms
in order to keep similar performances (in terms of latency)
to ORPL(-LB). ORPL-LB maintains the PDR above 90% for
almost 140 min while ORPL goes below this threshold after
105 min of experiment, and RPL witnesses such drop in
delivery as early as minute 80. Considering 90% as threshold
under which the network could not maintain an adequate
quality of service, ORPL-LB is then able to extend the network
lifetime by 33% compare to ORPL.

It is worth noting that although ORPL-LB keeps most of
the nodes operational for a long period of time, it eventually



8

0

20

40

60

80

100

N
o
d

e
 c

o
u
n
t 

(#
)

RPL (125ms)

ORPL (500ms)

ORPL-LB (500ms)

20 40 60 80 100 120 140 160 180 200 220 240

time (min)

0

20

40

60

80

100

P
D

R
 (

%
)

Fig. 10. ORPL-LB keeps a PDR of at least 90% for almost 140 min against
∼105 min for ORPL and ∼80 min for RPL.

reaches a point where many nodes deplete at once, crossing
ORPL in the late life of the network. Due to the fact that the
energy consumption is better balanced, the nodes tend to fail
at the same time. This occurs at a point in time where more
than 40% of the nodes are already out.

E. Finding a Target Duty Cycle at Runtime
We evaluate our methodology to automatically determine a

target duty cycle at runtime (see Subsec IV-C). To evaluate
this mechanism, we ran 5 ORPL-LB experiments within the
Indriya testbed. Each experiment is a collect-only setup (see
Section V.A) and lasts one hour.

The initial duty-cycle target advertised by the sink is
DCtargetMAX = 1%. This value is selected because it is
almost twice the average duty-cycle observed in the same setup
using ORPL. We observe that at the end of each experiment
the target duty-cycle advertised by the sink has converged to
a value which was at least 0.50% and at most 0.60%. This
is in-line with the average duty-cycle of 0.57% observed for
simulations with ORPL on the same setup (see Table 1). This
means that ORPL-LB is able to achieve the same average duty-
cycle as ORPL but with the additional benefit that the load
is much better balanced than ORPL, leading to an increased
network lifetime.

F. Performance under Heavy Load
We evaluate the ability of OPRL-LB to handle a heavy traffic

load.
Using the high load optimization described in Sec IV-D

we compare ORPL-LB to ORPL and RPL in Indriya with
data collection at various intervals. For a fair comparison the
wake-up interval for RPL has been fixed to 500 ms as for
ORPL (see Sec V-C)3. The ContikiMAC ”burst mode” is used

3Using the 125 ms wake-up interval would result to RPL being able to
reduce the time spent by the packets in the queues compared to ORPL(-LB)

for both RPL and ORPL(-LB). This mode allows a node to
send several packets in a row to the same destination when an
acknowledgement has been received.

We vary the data collection interval among 1 minute, 30
seconds and 15 seconds. Considering the 93 nodes in the
Indriya testbed and the fact that the root does not send any
data packets, these intervals result respectively in the following
loads at the sink: 1,53 packets/s, 3.06 packets/s and 6.13
packets/s. The results of our experiments are presented in
Tab II. For each transmission interval, these results have been
averaged on at least four 1-hour runs.

Data tx delay Protocol PDR (%) Lat (s) DC (%)

60 sec ORPL 99.65 0.94 0.92
ORPL-LB 99.76 0.82 0.98
RPL 96.91 1.75 0.66

30 sec ORPL 99.3 1.79 1.48
ORPL-LB 99.77 1.21 1.44
RPL 96.23 2.27 1.02

15 sec ORPL 96.48 5.77 3.36
ORPL-LB 98.39 3.76 3.08
RPL 89.14 5.24 2.11

TABLE II. HIGH LOAD EXPERIMENT SUMMARY: UNDER DIFFERENT
NETWORK LOADS THE LOAD BALANCING MECHANISM OF ORPL-LB

ALLOWS TO REACH A BETTER PDR THAN BOTH RPL AND ORPL.

The reduction of the PDR as the load increases is explained
by a saturation of the nodes’ transmit queues. At high loads,
the medium saturates and collisions become more frequent.
The high traffic load, combined with the deteriorated medium,
put even more pressure on the node’s queues, causing packet
drop.

ORPL-LB outperforms ORPL and RPL thanks to load
balancing and opportunistic routing combined. At the highest
load, ORPL-LB increases the PDR by almost 2 percentage
points (pp) compared to ORPL, and 9.5 pp compared to RPL.
Compared to ORPL this is achieved with a lower latency and
a slightly reduced duty cycle. Compared to RPL, the latency
is lower but the duty cycle higher, as expected based on the
observations made in Sec V-C.

VI. RELATED WORK

Load balancing aims at avoiding too great disparity in the
energy consumption of the nodes by making the traffic as uni-
form as possible. Different approaches have been proposed to
bring load balancing within WSNs: hierarchical, flat, multipath
or tree.

Hierarchical protocols are mainly based on the creation of
clusters where the nodes can directly communicate with each
other but can only communicate with other clusters via their
own cluster head. The formation of a cluster and the selection
of the cluster head are the subject of much research [11]. The
main limitation of such techniques is their centralized nature,
which limits their scalability and applicability.

The flat model approach [12], on the other hand, allows the
nodes to make their own routing decision locally. Multipath
routing promotes the use of several concurrent paths to send
data to the destination [13]. This particularity can be used for



9

load balancing purposes by splitting the traffic between the
available paths [14] but requires more routing information to
be maintained. Finally tree-based routing such as CTP [1] and
RPL [2] by using different objective functions try to build a
well-balanced tree.

LB-RPL [4] is a load-balanced version of RPL that ad-
dresses load balancing in a sender-oriented approach. Indeed
with LB-RPL each node is responsible to select the best next
hop in order to try to maintain a certain balance between the
nodes. In LB-RPL, nodes maintain a list of k potential parents,
and select one of them on a per-packet basis depending on the
parent’s load. The objective is to avoid to saturate a node with
a high number of children.

This is achieved at the expense of a specific mechanism
allowing a child to learn the load of all its followers. The load
is quantified based on the buffer utilization of the parents,
which is disseminated through RPL DIO control messages.
Each node will use a delay proportional to its workload to
offset a DIO transmission: the higher the workload, the higher
the delay. Once a node has computed the load of its k parents,
the two nodes with the lower load are selected and the packets
are distributed between them in proportion to their link quality.

BCP [15] is another approach that uses back pressure from
the nodes’ queue in the path towards the sink. By computing
for each neighbor a back-pressure weight based on this queue
backlog and the link quality the routing decision can be
achieved independently for each packet. The originality of this
approach is to intentionally allow to send a packet backward
to a node furthest from the destination. This makes BCP par-
ticularly efficient in case of high transmission rates. The main
drawback of this protocol is very poor energy performance and
the fact that, due to the use of a LIFO queue, some packets
can remain in the queues for arbitrarily long times.

Another original proposal for reducing energy consumption
is the Broadcast-Free Collection Protocol [3]. BCF offers
to remove the broadcast transmissions in order to reduce
the energy consumption of the nodes. To build a topology
without broadcast BFC forces each node to eavesdrop on
the unicast transmission within its range to select a parent
with a reliable path to the sink. The main drawback of this
broadcast free methodology using only unicast is to benefit
essentially to the sink’s neighbors and the leaves. While the
unicast transmissions of the sink’s neighbors are cheap due to
the fact the always-on sink can directly acknowledged them,
the (broadcast-free) traffic of the leaves is restricted solely
to send their own packets given they do not relay anything.
The restricted impact of BFC on the relay nodes makes this
protocol unable to efficiently addresses the energy hotspots
issue.

ORPL-LB differs with the above approaches by being the
first to exploit opportunistic routing for load-balancing. Dy-
namic wake-up interval combined with opportunistic routing
gives an enhanced control on the traffic load and resulting
energy consumption. Moreover this approach does not require
any load info propagation towards the children.

VII. CONCLUSION

We presented ORPL-LB, a load-balanced extension of
ORPL. By allowing each node to adapt its wake-up interval
based on a network-wide objective, ORPL-LB allows to reduce
the energy consumption of the hotspots. This leads to an
enhancement of the network lifetime.

Our testbed experiments have shown that ORPL-LB reduces
by almost 40% the energy consumption for the hotspots.
This is achieved with no impact (or a negligible one) on the
performance in terms of reliability, energy consumption and
latency. Considering the network lifetime as the time during
which the network is able to maintain a high PDR (at least
90%), ORPL-LB is then able to extend the network lifetime
by on average 33% compared to ORPL.

REFERENCES

[1] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Lewis, “Collec-
tion Tree Protocol,” in Sensys’ 09, Berkeley, USA, November 2009.

[2] T. Winter et al., “RPL: Ipv6 routing protocol for low-power and lossy
networks,” in Internet Engineering Task Force, RFC 6550, March 2012.

[3] D. Puccinelli, M. Zuniga, S. Giordano, and P. J. Marrn, “Broadcast-Free
Collection protocol,” in SenSys’12, Toronto, ON, Canada, November
2013.

[4] X. Liu, J. Guo, G. Bhatti, P. Orlik, and K. Parsons, “Load balanced
routing for low power and lossy networks,” in WCNC’ 13, Shangai,
China, April 2013.

[5] S. Duquennoy, O. Landsiedel, and T. Voigt, “Let the tree bloom:
Scalable opportunistic routing with ORPL,” in Sensys’ 13, Rome, Italy,
November 2013.

[6] M. Doddavenkatappa, M. C. Chan, and A. Amanda, “A low-cost, 3D
wireless sensor network testbed,” in TridentCom, 2011.

[7] C. Cano et al., “Low energy operation in wsns: A sur-
vey of preamble sampling mac protocols,” in Comput. Netw,
doi:10.1016/j.comnet.2011.06.022, 2011.

[8] A. Dunkels, “The contikimac radio duty cycling protocol,” in SICS
Technical Report T2011:13, 2011.

[9] O. Landsiedel, E. Ghadimi, S. Duquennoy, and M. Johansson, “Low
power, low delay: Opportunistic routing meets duty cycling,” in
ISPN’12, Beijing, China, April 2012.

[10] “ns-2, http://nsnam.isi.edu/nsnam/index.php/MainPage.”
[11] D. W. abd B. V. Thakur, “Load balancing algorithms in wireless sensor

network: A survey,” in IJCNWC ISSN:2250-3501 Vol2, No4, August
2012.

[12] Q. Jiang and D.Manivannan, “Routing protocols for sensor networks,”
in Consumer Communication and Networking Conference CCNC, First
IEEE pp93-98, 2004.

[13] J. Gallardo, A. Gonzalez, L. Villasenor-Gonzalez, and J. Sanchez,
“Multipath routing using generalized load sharing for wireless sensor
networks,” in Proceeding of the International Conferences on Wireless
and Optical Communications, Montreal, QC, Canada, 2007.

[14] E. Jones, M. Karsten, and P. Ward, “Multipath load balancing in
multi-hop wireless networks,” in Proceedings of the IEEE International
Conference on Wireless and Mobile Computing, Networking and Com-
munications (WiMob 05), Montreal, QC, Canada, 2005.

[15] S. Moeller, A. Sridharan, B. Krishnamachari, and O. Gnawali, “Routing
without routes: The Backpressure Collection Protocol,” in IPSN 2010,
2010.


