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ABSTRACT
The Internet of Things, by digitizing the physical world,
is envisioned to enable novel interaction paradigms with
our surroundings. This creates new threats and leads to
unprecedented security and privacy concerns. To tackle
these concerns, we introduce Talos, a system that stores
IoT data securely in a Cloud database while still allowing
query processing over the encrypted data. We enable
this by encrypting IoT data with a set of cryptographic
schemes such as order-preserving and partially homomor-
phic encryption. In order to achieve this in constrained IoT
devices, Talos relies on optimized algorithms that accelerate
order-preserving and partially homomorphic encryption by
1 to 2 orders of magnitude. We assess the feasibility of
Talos on low-power devices with and without cryptographic
accelerators and quantify its overhead in terms of energy,
computation, and latency. With a thorough evaluation of
our prototype implementation, we show that Talos is a
practical system that can provide a high level of security
with a reasonable overhead. We envision Talos as an
enabler of secure IoT applications.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Gen-
eral—Security and Protection

General Terms
Security, Design

Keywords
Data Security; Internet of Things; Computing on Encrypted
Data; Homomorphic Encryption; Cloud Computing

1. INTRODUCTION
With the advent of the Internet of Things (IoT), there

has been a rise in the number of devices empowered with
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Figure 1: Talos enables protection of IoT data al-
ready at the origin. The Cloud database has no
access to the encryption keys, but is able to process
queries over encrypted data. All keys are derived
from a master secret held by the user.

sensing, actuating, and communication capabilities. These
devices are typically connected to Cloud services, but are
physically integrated with our living space. Hence, they deal
with sensitive and private data that could be misused to in-
fer privacy violating information. This consequently raises
unique security and privacy concerns, which need to be ad-
dressed in the IoT ecosystem.
Conventional security solutions for the IoT utilize, at

best, an end-to-end (E2E) secure channel to store IoT
data on a Cloud database. A secure E2E channel protects
the communication against unauthorized entities (e.g.,
eavesdropping and modification attacks), but leaves the
data unprotected on the Cloud. Storing data in such form
leaves it vulnerable to breaches [51], caused by hackers and
curious administrators [1]. Moreover, financial incentives
might lure our today’s trusted Cloud service providers into
disclosure of sensitive information derived from our data or
unauthorized sharing/selling of our data [31,39].

Encrypted Query Processing. An intuitive approach to
counter such attacks is to store data in encrypted form in the
Cloud database, and have all data en-/decryption performed
at the user-side. This, however, is impractical, as it prevents
any server-side query processing and results into undesirable
application delays. To overcome this limitation, several en-
crypted query processing approaches [11, 17, 36, 53, 54] have
been introduced in the past years. These approaches utilize
cryptographic techniques (e.g., order-preserving encryption
and homomorphic encryption) that allow computations to
be carried out on encrypted data.
CryptDB [53] is one of the first practical systems that

integrates efficient encrypted query processing into the
database management system. In CryptDB, the cloud



can perform traditional database queries over encrypted
data and reply with the encrypted result. To achieve this,
CryptDB relies on a trusted proxy which intercepts the
communication and applies en-/decryption transparent to
the user. This approach does not require any modification
of the database nor the client-side and adds a modest
computation overhead of 25% [53]. CryptDB is designed
with web applications in mind and is not suitable for
IoT application scenarios, mainly because: (i) it employs
cryptographic schemes that are prohibitively expensive for
constrained IoT devices and (ii) it relies on a trusted proxy,
which has access to the encryption keys and plaintext
information.

Talos: Encrypted Query Processing for the IoT. In
this paper, we present Talos1, an IoT data protection sys-
tem which securely stores encrypted IoT data on the Cloud
database, while allowing for efficient database query process-
ing over the encrypted data (see Figure 1). In our design,
we move away from CryptDB’s focus on web applications
only. Instead, we design a secure E2E system that stores en-
crypted data from IoT devices on a Cloud database, where
data protection is executed at the data source. Thus, we dis-
pense with the role of a trusted proxy which has access to all
keying material. This allows us to address a stronger threat
model, where only the end-user has access to the secret keys.
To put the use case of Talos into context, let us consider

the application scenario of a health monitoring device sim-
ilar to Fitbit Tracker2 which logs heart rate, location, and
timestamps. The heart rate measurements can be used to
infer sensitive information about a person, such as stress,
depression, and heart-related diseases. Hence, heart rate in-
formation should be protected from untrusted parties. To
still allow certain computations, e.g., average, over the pro-
tected heart rate data, Talos utilizies additive homomorphic
encryption (see §3.1 for the detailed descriptions of di↵erent
cryptographic terms). The location is potentially also sensi-
tive. Thus, Talos applies deterministic encryption, allowing
encrypted queries correlating heart rate with location. Fi-
nally, the timestamps are encrypted with order-preserving
encryption, to allow order-related searches.
One major barrier to employing cryptographic primitives

on IoT devices is their resource constraints. IoT devices are
inherently limited with regards to energy, memory, CPU,
and bandwidth. These challenges are exacerbated with com-
putationally heavy public-key-based cryptographic schemes,
such as order-preserving and additive homomorphic encryp-
tion. Hence, we apply optimizations to these encryption
schemes to make them suited towards IoT devices, yet with-
out scarifying their level of security. Our work covers (i) an
optimization of Paillier’s additive homomorphic encryption
scheme for integer data items, (ii) a solution enabling the
elliptic curve ElGamal encryption scheme (EC-ElGamal)
as an alternative additive homomorphic encryption, and
(iii) employing an interactive order-preserving encryption
scheme.

1In ancient Greek mythology, Talos is the protector and pa-
tron of just rulership and civil society.
2Fitbit Tracker Flex comprises a low-power ARM Cortex M3
Microcontroller similar to the one we based our prototype
implementation on: https://www.ifixit.com/Teardown/

Fitbit+Flex+Teardown/16050

Contributions. This paper makes the following contribu-
tions:

• Design and evaluation of Talos, a fully-implemented
E2E secure system for IoT. Talos is compatible to the
core CryptDB, which implements SQL-aware encryption
schemes. We make our prototype implementation for the
Contiki OS [18] publicly available3. Moreover, Talos is a
software platform enabling additional research on data
protection and could be seamlessly integrated into vari-
ous IoT application scenarios.

• We propose practical solutions to enable di↵erent cryp-
tographic primitives in constrained devices, in particu-
lar for order-preserving and homomorphic encryptions.
We introduce an optimization to Paillier (additive homo-
morphic encryption) tailored for use with integers, and
propose an e↵ective way of mapping integers to ellip-
tic curve points in order to enable EC-ElGamal as an
alternative additive homomorphic encryption scheme.

• We demonstrate experimentally the feasibility of Talos.
We quantify the performance of Talos in terms of en-
ergy, computation, communication, and latency. First,
we microbenchmark the performance of the considered
cryptographic primitives, both with and without hard-
ware accelerator. Second, we quantify the overall system
performance in Flocklab [20, 42], a public testbed, emu-
lating IoT-typical scenarios.

2. OVERVIEW
We now briefly discuss background information and the

security model our system addresses. Alongside, we give an
overview of Talos.
We design Talos with three main actors in mind (see Fig-

ure 1): (i) the user who is interested in the IoT data, for
instance the peak heart rate in the past month. (ii) the IoT
devices where the data originates from. IoT devices are in-
herently resource limited, specifically with regards to mem-
ory. Thus, it is necessary for IoT devices to regularly o✏oad
their data into a Cloud database. In case the IoT device
lacks any Internet-connectivity, the personal gateway (e.g.,
the smartphone for wearables) runs the Talos engine. We
investigate the role of personal gateways in encrypted data
processing in [59]. (iii) the Cloud database, which stores
IoT data securely and has the ability to process queries over
encrypted data. Note that IoT devices would potentially
need to query the data on the Cloud to make certain ac-
tuation decisions, for instance in case of automated heating
systems. However, in our current design we only consider
the data producing (i.e., sensing) IoT device and address the
data consuming (i.e., actuating) IoT device in future work.
IoT data consists of sensor readings (e.g., integer/float),

meta-data (e.g., time, location, and identifier), and im-
age/audio/video files. We consider text files to be signifi-
cantly less represented in IoT data than in web and smart-
phone application data. Application developers should be
aware of the sensitivity of data items and encrypt them with
the adequate type of encryption. In §3, we detail the four
main types of encryption and explain what functionality and
security each type provides. We apply the data protection
already at the IoT device, in order to reduce the attack sur-
face and limit the need of trusted parties (see Figure 2).

3Talos can be downloaded from https://github.com/

hosseinsh/Talos
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Figure 2: Talos extends CryptDB [53] to secure IoT
data. Talos supersedes a trusted proxy with access
to all keys. Instead, data protection is performed at
IoT devices or personal gateways, e.g., smartphones.

For the Cloud database, we rely on our extended version
of CryptDB [53] which is tailored towards IoT-application
scenarios.

2.1 Background: CryptDB
CryptDB brings together powerful cryptographic tools, to

create an encrypted query processing system targeted for
database management systems (DBMS). In order to remain
transparent and seamless, the en/-decryption process is per-
formed on a trusted proxy which has access to the keying
material (see upper part of Figure 2). The DBMS remains
unmodified and is only extended with additional user de-
fined functions (UDF) which perform the encrypted query
processing. CryptDB addresses the threat models of honest-
but-curious [48] database administrators and the concurrent
compromise of the application server, proxy, and DBMS. In
the latter threat, only data of logged-in users is disclosed.
CryptDB leverages the fact that most SQL-like database

queries are composed of simple mathematical operations,
such as equality check, order comparisons, aggregation, and
joins. To allow these operations over encrypted data, known
cryptographic schemes, such as order-preserving and addi-
tive homomorphic encryptions, are employed. However, only
few data types need to be encrypted with these encryp-
tion schemes, to enable query executions. Hence, most data
items can be protected with efficient and secure symmetric
key encryptions.
For SQL-aware encryption, CryptDB defines the following

main encryption types: random with the highest security as
it provides semantic security (indistinguishability under an
adaptive chosen plaintext attack), deterministic which re-
veals equality information, order-preserving encryption re-
vealing order information, additive homomorphic encryp-
tion, enabling addition over encrypted data, and keyword
search over encrypted texts.
We explain these encryption types in more details in §3,

as we elaborate on the specific encryption schemes we em-
ploy in Talos. Specifically, for order-preserving and addi-
tive homomorphic encryptions, which are computation- and
bandwidth-intensive, we explore and utilize alternative ap-
proaches to reduce overheads and render them more efficient.
We intentionally do not yet support encrypted word search,
as we do not yet see the use case of this scheme for IoT data.

2.2 Security Analysis
CryptDB addresses two important threat models consist-

ing of DMBS compromise, and a more severe one including
the compromise of application server, proxy, and DBMS.

We not only inherit the security threat model addressed by
CryptDB, but we address an even stronger database threat
model, without a trusted proxy, as illustrated in the lower
part of Figure 2. In addition, we address a network-based
threat model. Note that IoT devices are vulnerable to
physical node capture attacks. We do not address this
attack specifically, however, we weaken it by utilizing a
memory-protected area for key storage.

Threat 1: Cloud Database Compromise. The Cloud
database provides confidentiality, i.e., secrecy of data, and
no other security properties, such as integrity, correctness,
or availability. The attacker is assumed to be passive, i.e.,
with read-only access to all database data and to the RAM
of the physical machines. The attacker is however not able
to modify the queries nor the encrypted data. This threat is
getting increasingly important in today’s Internet, with the
flourishing of third party Clouds.
Unlike CryptDB, Talos is not designed to run with un-

modified Web clients, but rather to facilitate an end-to-
end integration with IoT devices. Therefore, we do not re-
quire a trusted proxy, thus providing stronger security than
CryptDB. Talos provides the following guarantees: (i) at no
time, the Cloud database has access to any keying material,
(ii) during query processing, the data remain encrypted.
Note that the security of Talos is not perfect, as it reveals

relationships among data items that allow for equality checks
or ordering. Such data items, depending on the application
scenario, are only column-wide. The remaining data items
leak no further information, as long as encrypted with prob-
abilistic encryption. Consequently, an attacker can learn the
occurrence of a data item (e.g., via the histogram attack),
however he can not gain access to the actual plaintext.
This data leakage could be theoretically avoided by

utilizing recent advancements in theoretical cryptography
(i.e., fully homomorphic cryptosystem [23]) that enable any
computations over encrypted data, without revealing any
information. However, these approaches are still computa-
tionally very expensive, rendering them impractical [55].
Talos is a practical system, providing strong security for
most data items, while tolerating leakage of relational
information for less sensitive data items.

Approach. Talos builds on the capabilities of CryptDB to
allow processing of SQL-like queries over encrypted data. In
addition to the CryptDB encryption schemes, we introduce
a set of cryptographic primitives tailored for constrained de-
vices. We introduce and elaborate our findings and the re-
sulting design decisions further in a dedicated section (§3).
Moreover, Talos assumes state-of-the-art database secu-

rity mechanisms to be in place. For instance, the Cloud
database should additionally store encrypted backups of the
database. We discuss current research approaches aiming
at providing Cloud security and related cryptographic
approaches in §7.

Threat 2: Network-based Attacks. This threat tar-
gets communication between the IoT device and the Cloud.
This threat can be carried out by passive or active attackers,
as discussed in the following. A passive attacker can launch
non-intrusive eavesdropping and traffic analysis attacks. Ta-
los addresses this threat by establishing a transport layer-
based E2E secure channel between the IoT device and the



Cloud (see Figure 2). This allows to provide confidentiality,
integrity protection, and authenticity of the data.
Talos utilizes weaker encryption schemes on database

elements to enable encrypted query processing. With
the secure E2E communication, we avert any relational
data leakages, guarantee integrity protection, and au-
thenticity of the data. An active attacker can launch a
man-in-the-middle attack, to gain access to the plaintext
values originated at the IoT device or make the IoT device
believe it is communicating with the Cloud database (i.e.,
impersonation of the Cloud). Talos addresses this threat
by a public-key-based authentication scheme for the E2E
secure channel.

Approach. DTLS [47] provides confidentiality, authen-
ticity, and integrity protection of communication. This
is achieved by means of AES-CCM, which encrypts a
given message while providing data-origin authentication
and integrity protection. The main challenge with DTLS
within constrained environments is the channel establish-
ment, where the session keys are negotiated. The conven-
tional approach is to rely on pre-shared keys. However,
stronger security is obtained with the public-key-based ver-
sion of DTLS. Talos applies DTLS in public-key mode with
support of X.509 certificates and raw public keys, where the
crypto operations could be accelerated by means of crypto-
graphic accelerators. This way, both the IoT device and the
Cloud database can authenticate each others’ identity.

3. DESIGN
Encrypted query processing is an emerging research field,

enabling better protection of user’s private data and resolv-
ing many privacy-related issues in Cloud computing. In-
spired by the recent advancements in this field, we intend to
bring the benefits of encrypted query processing to the IoT
domain.

3.1 Encryption Types
Encrypted query processing allows storage of encrypted

data at a third party database, yet simultaneously enabling
efficient search and computation over the stored encrypted
data. Although it would be desirable to utilize fully homo-
morphic encryption [23] to allow arbitrary computations, we
are yet bound to computationally feasible and efficient ap-
proaches, which enable only a subset of computations over
encrypted data.
To support common SQL-like queries, it is necessary to

be capable of performing equality checks and have knowl-
edge about the order of encrypted values. However, enabling
computation over encrypted data also means leaking infor-
mation, i.e., any order-preserving encryption scheme will, by
definition, reveal order relations. The encryption scheme is
chosen per column and accounts for the intended query type,
e.g., min, order by, etc. Data items that are not involved in
the processing of queries are encrypted with the strongest
cryptographic scheme (i.e., probabilistic encryption).
In the following, we describe the four types of encryption

schemes supported in Talos.

RAND. Probabilistic or random encryption is the strongest
security scheme, allowing no operation over encrypted data.
This scheme is the conventional scheme, widely used in com-
puting and storage. It has the property that the encryption

of the same plaintext m results into two di↵erent ciphers c1
and c2 such that c1 and c2 are by no means related (i.e.,
semantically secure under a chosen plaintext attack (CPA)).
AES in CBC mode is a good candidate for this type of

encryption. AES-CBC is a 16 Byte block-cipher encryption,
producing outputs of a size multiple times of the block-size.
To this end, the input is, if necessary, padded to have a
modulo 16 Byte size. Efficient hardware implementations
of AES encryption routines are integrated into most IoT
devices. Considering the fact that IoT data typically
have a smaller size than AES’s block size, the Blowfish
block-cipher encryption [58] with 8 Byte blocks is a good
alternative, producing smaller ciphers. Blowfish was as
well a candidate for AES (Rijndael was selected for the
final AES), but was considered inefficient for large file sizes
due to the 8 Byte block-size. We selected Blowfish among
several 8 Byte block ciphers (e.g., RC5, Skipjack) due to
its higher efficiency [62]. Talos employs both Blowfish and
AES in CBC mode. We apply the former for data smaller
than 8 Byte and the latter for data larger than 8 Byte.

DET. Deterministic encryption allows for equality checks.
The encryption of the plaintext m results always into the
same cipher c.
AES-ECB is a block-cipher encryption with such a prop-

erty. Due to this deterministic property it is in general ad-
vised not to use ECB for encryption of large packets, as an
attacker can: (i) change the order of the blocks or replace
a block in a indistinguishable manner (i.e., substitution at-
tack), or (ii) learn information about the plaintext with a
histogram of repeated blocks. Therefore, for maximum secu-
rity, AES-ECB should be only applied for plaintexts smaller
or equal to 16 Byte. For bandwidth efficiency reasons, we
employ Blowfish for plaintexts with a size smaller or equal
to 8 Byte.
AES and Blowfish in CBC mode with a fixed initializa-

tion vector (IV) have the deterministic property, however
due to undesirable leaks of prefix equality, they are not
secure options for plaintexts larger than the block size.
Therefore, we utilize AES-CMC [56] for plaintexts larger
than 16 Byte, as recommended by CryptDB. AES-CMC is
a tweaked combination of AES-CBC with a zero IV, where
AES-CBC is applied twice on the input. The second CBC
round is applied in the reverse order, i.e., from the last
block to the first block. This way, the first blocks become
deterministically random, and do not leak equality within
a data item.

OPE. In order-preserving encryption (OPE) the order re-
lationship between the plaintext inputs m1, m2, and m3 is
preserved after encryption, i.e.:

if m1  m2  m3, then c1  c2  c3 (1)

This way, the order information among the encrypted data
items ci is revealed, but not the actual data itself.
Order comparison is a common operation in SQL-like

databases, e.g., for sorting, range checks, ranking, etc. OPE
enables powerful operations and still o↵ers relatively strong
security, such that some research fields only focus on en-
abling secure databases or web applications by means of
OPE [13,57]. One of the first provably secure OPE schemes
is the approach introduced by Boldyreva et al. [9]. This
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coding (mOPE) with a balanced binary search tree.
The order encoding (path to the node) is appended
with a 1 and 0s, signaling the end of the encoding.

OPE scheme is, however, as computationally-intensive as
asymmetric encryption.
In order to cope with resource constraints of IoT devices,

we rely on a more recent interactive OPE approach by Popa
et al. [55], which solely relies on symmetric cryptography
and trades computation overhead for latency (i.e., it involves
more communication). We refer to this lightweight OPE
scheme, as mutable order-preserving encoding (mOPE) as
the order encodings are mutable. Popa et al. [55] prove
that mOPE fulfills the ideal security (IND-OCPA), i.e., no
additional information than the order is revealed. mOPE
is more secure than any other OPE approach and yet 1-
2 orders of magnitude less computationally-intensive than
traditional OPE schemes.
We detail the original mOPE and our optimizations to

further reduce the communication overhead in §3.2.

HOM. Research on fully homomorphic cryptosystems has
made significant advancements in the recent years, and been
able to show that arbitrary computations on encrypted val-
ues are implementable [23]. However, the involved compu-
tations are yet prohibitively high [55] even for full-fledged
devices and by far infeasible for resource constrained de-
vices. In order to support sum and average operations over
encrypted data, it is however sufficient to utilize additive
homomorphic encryption schemes, such that:

decrypt(c1 ◦ c2) = decrypt(c1) + decrypt(c2) (2)

Several cryptosystems exhibit homomorphic proper-
ties [21]. To start with, the textbook RSA and El-
Gamal’s cryptosystem are multiplicatively homomorphic.
Goldwasser-Micali’s (GM) [28] scheme is among the first
additive homomorphic cryptosystems achieving highest se-
curity level (i.e., probabilistic public-key encryption), which
inspired several later cryptosystems. Unfortunately, GM ex-
hibits a strong drawback as its input consists of a single
bit plaintext. Moreover, the expansion during encryption
results into large ciphertexts (i.e., |pq| bits) which, given
the single bit inputs, renders this scheme impractical. Be-
naloh [8] introduces a generalization of GM, which supports
encryption of plaintexts with higher bit-length k. This, how-
ever, comes with a higher cost of decryption. The decryp-
tion cost is dependable of k, which eliminates the gain of a
higher k. The Paillier [50] cryptosystem, one of the most
well-known homomorphic schemes, improves the previous
schemes by reducing the degree of expansion while allowing
a large k (i.e., k is equal to key-length |pq|). At the same time
the en-/decryption costs are reasonable (i.e., exponentiation
and multiplication of big numbers modulo |pq|). E↵orts [37]

Figure 4: mOPE is an interactive approach. The
number of interaction rounds depends on the cur-
rent size of the database (i.e., the tree) and the pa-
rameter k of the k-ary tree in use. Talos selects k=10
in favor of fewer interaction rounds, resulting into a
higher average rewrites per item in the Cloud (e.g.,
factor 4.7 for 107 items).

to reduce the encryption expansion of Paillier from 2 times k
have the side-e↵ect of significantly higher computation cost.
The Paillier [50] cryptosystem is employed by CryptDB. It

is, however, with regards to IoT resources, computationally
intensive and results into a large ciphertext size of 256 Byte,
given a key size of 1024 bit (see Table 1). In Talos, we
apply a slight modification to Paillier, inspired by Ge and
Zdonik [22], rendering it more efficient in terms of average
bandwidth and computation per data item. Moreover, we
explore the elliptic curve (EC)-ElGamal encryption scheme
as an alternative additive homomorphic encryption scheme.
In §3.3, we detail our modification to the Paillier cryp-

tossytem, our findings about EC-ElGamal, and the efficiency
of each approach.

3.2 Optimized Order-Preserving Encryption
The traditional OPE by Boldyreva et al. [9] is compu-

tationally 5 orders of magnitude more intensive than sym-
metric encryption. mOPE [55] is a recent interactive order-
preserving encryption scheme that allows us to drastically
reduce this overhead. mOPE utilizes lightweight symmetric
encryption and balanced search trees to preserve the order
information among ciphertexts. Intuitively, mOPE derives
the order relations from the structure of the tree. A tree
node holds a deterministically encrypted value where the
order-preserving encoding is basically the path from the root
of the tree to the node, as illustrated in Figure 3. For ex-
ample encrypt(77) has the encoding 11 concatenated with
100000 (assuming 8-bit encodings) to indicate the end of en-
coding. The encoding reveals that encrypt(77) is the largest
value in this tree.
mOPE is a client-server approach. The client intends to

apply mOPE on a value, while storing it in a database.
The server constructs the encoding, without learning the
plaintext value, and later stores the final encoding in the
database. For each new value, the server only learns the
relation of the new value with regards to existing ones. The
protocol starts with the client sending the new ciphertext
to the server, accompanied with the request to insert. The
server starts with sending the encrypted value at the root,
to learn if the new value is larger or smaller. The client de-
crypts the values and replies. The server traverses the tree
(i.e., in worst case O(log n) interactions) until it finds the
right spot to insert the new value. As we show later in our
evaluation in §5, the communication overhead of mOPE is
lower than the computation cost of the traditional OPE.



Algorithm Plaintext Ciphertext

[Byte] [Byte]

Blowfish-ECB (0, 8] 8 (+ 8 RAND)
AES-ECB (8,16] 16 (+ 16 RAND)
AES-CMC (16, 16 + n] 16 ⇥ d n

16
e (+ 16 RAND)

mOPE (integer) (0, 8] 16 (8 + 8 Byte encoding)
Paillier (1024-bit key) (0, 128] 256
EC-ElGamal (192-bit curve) (0, 4] 50 (2x 25⇤ Byte EC-points)
OPE [9] (integer) (0, 8] 16

Table 1: Plaintext-space to ciphertext-space. ⇤EC-
ElGamal’s ciphertext consist of 2 EC-points, which
could each be compressed to 25 Byte. In RAND, the
initialization vector (IV) is added to the ciphertext.

In order to avoid long paths in the search tree, the tree
needs to be rebalanced regularly. The server is able to re-
balance without the help of the client, based on the order
relation between nodes. However, as an encoding is based on
paths in the tree, rebalancing results in mutated encodings.
Hence, the name mutable OPE (mOPE). Note that the en-
coding is only used at the server side, to reveal ordering of
encrypted data. The client does not store any encoding, as
it would become obsolete after the next rebalancing.
The length of the encoding corresponds to the maximum

depth of the tree, where the end of the encoding is signaled
with a 10..0 padding, as depicted in Figure 3. We chose an
encoding length of 64 bit and apply our previously described
deterministic encryption strategy on the data items. This
implies data items smaller or equal to 8 Byte are encrypted
with Blowfish, data items between 8 and 16 Byte length are
encrypted with AES-ECB, and data items larger than 16
Byte are encrypted with AES-CMC.
For the search tree implementation, a k-ary tree is used

to achieve lower number of interactions. This way, in each
interaction round, the server sends the current node con-
taining  k data items. The client replies with an index
and an equality flag. The index refers to the index of the
data item, where the new value is equal or smaller than it.
The flag indicates equality of the new value to the item at
the index. In the latter case, the encoding of the existing
value is taken for the new value. Otherwise, the interaction
continues until a leaf node is reached.
We select a 10-ary tree which o↵ers a good trade-o↵ be-

tween the maximum length of an interaction packet and the
total number of interactions, as depicted in Figure 4. In-
creasing k from 4 to 10, allows us to reduce the average
interaction rounds by more than half. Even though this
increases the number of decryptions and comparisons per
round, our results (see §5) suggest that the savings from
having fewer interaction rounds outweigh this computational
overhead. Note that a drawback of such tree-based inter-
active approach is that the worse-case number of interac-
tions depends on the tree size. In our case the worst-case
is O(log10 n) interactions (e.g., with 109 existing items the
worst-case is 9 rounds).
In Talos, we rely on the prototype implementation of

mOPE [55] and extend it with support for UDP and IPv6.
To cope with the connectionless UDP, retransmission timers
on both ends reassures the termination of insert operations.
More importantly, we adjusted the interaction protocol to
be more concise. We transmit 2 Byte of header information
appended with raw integer data (instead of ASCII repre-
sentation of ciphertexts). This allows us to drastically re-
duce the communication overhead, up to a factor of 8. As
summarized in Table 1, both OPE schemes produce final
ciphertexts with the same length.

0 44 0 12 0 43 0 5 
0 32 0 23 0 34 0 34 
0 45 0 23 0 54 0 23 

ciphertext1 
ciphertext2 
ciphertext3 

HOM-ADD 

HOM-ENC 

ciphertext 

HOM-DEC 
121 58 131 62 
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party 

Trusted  
party 

packed values 

Sum() 

Figure 5: Illustration of our Paillier optimization.
Several values are packed into one block, considered
as one large number. The structure of packed values
is maintained after decryption. After decryption,
the sum of the final block is equal to the sum of all
packed values.

3.3 Optimized Homomorphic Encryption
The Paillier cryptosystem is an additive homomorphic en-

cryption scheme which is based on asymmetric cryptogra-
phy. We briefly explain the mathematical operations in-
volved in Paillier, in order to be able to explain how we
improve its efficiency with regards to encryption expansion.
The user defines the public key (n, g) and the private key d

by selecting two large primes (p and q) of the same bit-length
and g, a large random number modulo n:

n = pq, d = (q − 1)(p− 1) (3)

Encryption of the message m is performed as follows:

c = (gm)(rn) mod n

2 (4)

where r is a large random number modulo n. Decryption of
cipher c is performed as follows:

m = L(cd mod n

2) µ mod n (5)

where L(x) =
(x− 1)

n

, and µ = (L(gd mod n

2))−1mod n

The homomorphic addition function is defined by multi-
plication of the ciphers modulo n

2. Note, the ciphertext size
is 2n, i.e., for a 1024 bit key, 2048 bit (256 Byte).
In order to render Paillier more efficient, we apply a trick

introduced by Ge and Zdonik [22] and illustrated in Figure 5.
We use the fact that Paillier plaintext can be as large as n =
1024 bits, whereas IoT data often only consists of integers.
The idea is to concatenate several values to form a single
larger plaintext that will be encrypted in a single Paillier
operation. We leave enough space for the carry bits of each
value: <space, value1, space, value2, ... , space, valuei>.
Assuming 32-bit values and 32-bit spaces, 16 values can be
packed into a ciphertext.
This way, we amortize the computation and space

overhead of Paillier among several values. This approach is
possible since during the homomorphic addition operation
(i.e., multiplication of ciphertexts) the aligned values are
summed together (see Figure 5). A user interested in
the sum of a data item, now receives a ciphertext of this
form: <sum1, .. , sumi>. After the decryption process, she
can extract any sumi and ultimately compute the total sum.

EC-ElGamal. Paillier encryption is an expensive opera-
tion on IoT devices, where it can take up to 3.1 s (discussed
in §5). As an alternative additive homomorphic encryption
scheme to Paillier, we present in the following EC-ElGamal
in more details. EC-ElGamal’s security is based on the ellip-
tic curve discrete logarithm problem (ECDLP). This means



Figure 6: Memory-computation tradeo↵ in the
Baby-Step-Giant-Step algorithm on a Google Nexus
5. Talos stores a pre-computed look-up table of
45 MByte and solves an ECDLP for an unsigned
32-bit value in maximum 190 ms with only 1 thread.

given two points P and Q on the curve, finding the scalar k
such that P = kQ, is a hard problem. Note that the scalar
multiplication kQ is calculated as k times the elliptic curve
addition of Q (for more details on elliptic curve cryptogra-
phy (ECC) refer to [48]). In EC-ElGamal, after defining the
elliptic curve (EC) parameters such as the generator point
G, the encryption of message M (a point on the curve) is
defined as two points on the curve C

0 and C

00:

C = (C0
, C

00), where C

0 = M + rQ, C

00 = rG (6)

As it is common in ECC, Q = dG is the public key, d the
private key, and r is a large random number. Decryption of
a cipher C is performed as follows:

M = C

0 − dC

00 (7)

To perform the homomorphic addition operation, the cipher
components, which are each EC-points, are added to each
other (i.e., EC-point addition):

C1 + C2 = (C0
1, C

00
1 ) + (C0

2, C

00
2 ) =

(M1 +M2 + r1Q+ r2Q, r1G+ r2G)

M1+2 = C

0
1+2 − dC

00
1+2 =

M1 +M2 + r1Q+ r2Q− d(r1G+ r2G) (8)

where rdG = rQ, since Q = dG.

Representation of Plaintext as EC-Point. A challenge
in making practical use of EC-ElGamal is that it operates on
EC-points rather than arbitrary messages. Efficiently and
deterministically mapping of an arbitrary message into an
elliptic curve point is an open research problem [40]. Koblitz
suggests encoding of a message m into the x-coordinate of
an elliptic curve [40]. This approach, however, is not homo-
morphic and therefore not suitable for EC-ElGamal.
We use a theoretical assumption from cryptography [48],

which becomes practical in IoT scenarios, where we often
deal with small integers, i.e., 32-bit. To map an integer m to
an EC point M , we multiply m to a publicly known point G
on the curve, i.e., M = mG. Such scalar EC multiplications
(i.e., m times addition of G) can efficiently be performed on
an IoT device. This approach is homomorphic, since

dec(C1+C2) = M1+M2 = m1G+m2G = (m1+m2)G (9)

At decryption time, we need to map M back to m, only
with the knowledge of G. This requires solving an elliptic
curve discrete logarithm problem (ECDLP). Although this
is computationally infeasible for large numbers, solving it for
a 32-bit integer m can be realized in a reasonable time (see
Figure 6). Using the Baby-Step-Giant-Step algorithm [61],

Component ROM static RAM
[Byte] [Byte]

Cryptographic accelerator 312 -
BigNumber operations* 2,832 -
EC operations* 1,144 -
ECDSA* + ECDH* 1,840 884
EC-ElGamal* 840 644
Paillier encryption* 712 780
mOPE client 2,322 1,396
AES (ECB, CBC, CCM)* 1,820 16
Blowfish (software) 4,548 4,168
SHA-256* 660 32
Subtotal 17,030 7,920
DTLS engine + client 16,942 7,370

Sum 33,972 15,290

Table 2: Memory size of cryptographic components
of Talos on OpenMotes (considering max sizes). *All
algorithms based on hardware crypto accelerator
can be substituted by software implementations.

Talos is able to retrieve m from M in maximum 190 ms
(benchmarked on a Google Nexus 5, a typical device where
decryption takes place). To achieve an upper computation
bound of 190 ms, a pre-computed look-up table of 45 MByte
is necessary.
Note that this procedure does not a↵ect the overall secu-

rity: we solve the ECDLP to obtain m from M , but M itself
is protected with a strong cryptography, in our case 192-bit
ECC (more secure than 1024-bit RSA).

3.4 Access Control
In the following we briefly present key components of the

access control mechanism adopted in Talos.

Authorization. To ensure that only authorized entities
can access/add data in the Cloud database, Talos employs
the OAuth2 protocol [30] to grant IoT devices authorized
access to the Cloud database. In the OAuth2 protocol, the
IoT device initiates a request to the Cloud. Consequently,
the Cloud replies with an authentication URL, which is used
to authenticate the user to the Cloud. After a successful
login, the user can define the type and duration of the
authorization. The next connection request from the IoT
device is answered with an access token used for subsequent
Cloud connections.

Key Management. Talos foresees the storage of the mas-
ter secret by the user. This master secret is used to derive
all the keying material used to protect the data. A PRF
(Pseudo-Random Function, e.g., SHA-256) can be used to
generate i deterministic keys keyi to be used by the IoT
devices. For this we use a key chaining approach [53] that
concatenates a well defined ID, e.g., column-name or data
type, to the master secret (MS):

PRF(MS|IDi) = keyi (10)

The MS never leaves the user device. The derived keys are
securely placed on the corresponding IoT devices.
In case key revocation is needed, for instance in case of

disposed/compromised IoT devices, the user revokes the ac-
cess token of the IoT device and re-encrypts the data in the
Cloud database with a fresh key. Moreover, data sharing is
a relevant feature that could be integrated into Talos. We
are exploring data sharing for such systems in future work.



Task current [mA]

CPU idle @32 MHz 12.8 0.11
CPU active @32 MHz 20.8 0.11
AES/SHA hardware accelerator 23.6 0.13
Public-key hardware accelerator
(CPU idle)

25.9 0.12

Radio Transmission (TX), CPU idle 24 -
Radio Reception (RX), CPU idle 20 -

Table 3: Current drawn during computations on
OpenMotes. Given the supply voltage (2.1 V) and
the duration of a task, we calculate the drawn en-
ergy: time [s] ⇥ voltage [V] ⇥ current [mA] = energy [mJ].

4. IMPLEMENTATION
We have implemented a prototype of the Talos system.

Our prototype implementation consists of two main com-
ponents: (i) The IoT component of Talos is implemented
for OpenMotes4 in the Contiki OS 2.7 [18] and (ii) the
Cloud database component is an extended implementation
of CryptDB [53]. For space reasons, we discuss only the
former in more details.
OpenMotes are based on the TI CC2538 microcon-

troller [63], i.e., 32-bit ARM Cortex-M35 SoC at 32 MHz,
with a public-key cryptographic accelerator running up to
250 MHz. They are equipped with 802.15.4 compliant RF
transceivers, 32 kB of RAM and 512 kB of ROM.
Talos is platform independent and our findings can be ap-

plied to any other platform. We chose the OpenMote as
our prototype platform, because it has a public-key crypto-
graphic accelerator (including SHA-256) on board and due
to the promising potential of 32-bit platforms in next gener-
ation embedded platforms [41,45]. Moreover, low-priced and
energy-efficient cryptographic accelerators are predicted to
find their ways into low-power platforms [2]. For the cryp-
tographic accelerator, we implement generic drivers for big
number arithmetic operations (utilized by RSA and Paillier)
and ECC operations (utilized by ECDSA, ECDH, and EC-
ElGamal). In case no cryptographic accelerator is available,
these fundamental operations are provided by a software im-
plementation. We used the crypto library Relic Toolkit [4]
for this purpose.
While relying on the cryptographic accelerator Talos re-

quires 2.4 kB of RAM and 10 kB of ROM for the crypto
components. In case no cryptographic accelerator is on
board, a considerable amount of memory is dedicated to
Relic Toolkit. The exact memory size is dependent on sev-
eral configuration parameters to optimize Relic Toolkit. It
is however in the range of 8 kB of RAM and 66 kB of ROM.
The breakdown of memory requirements in Talos is shown
in Table 2. We use the tools arm-none-eabi-readelf and
arm-none-eabi-size to perform our memory analysis on
the binaries. Hereby, DTLS makes a major contribution
with 7 kB of RAM and 17 kB of ROM. We measure a maxi-
mum stack size of 2 kB. It is important to mention that our
memory values cannot be directly translated for 8- or 16-bit
platforms, as our platform comes with 32-bit registers.
We assume hardware AES block encryption to be available

(which has been integrated in most RF transceivers for more
than a decade). We extend existing drivers for AES to sup-
port additional modes, such as the AES-CMC for determin-

4OpenMote platform: openmote.com
5Fitbit Tracker utilizes a microcontroller with similar capa-
bilities.

States Time Energy

Public-Key Crypto (ECDSA, ECDH) 1,191.75 ms 59.1 mJ
CPU 9.46 ms 0.5 mJ
TX 47.73 ms 3.4 mJ
RX 43.46 ms 2.2 mJ
Symmetric Crypto (AES-CCM, SHA) 5.86 ms 0.48 mJ
Total (without idle) 1,232.8 ms 65.4 mJ
idle/sleep (1-2 wireless hops) 455 ms - 2 s < 2.52 mJ

Table 4: Secure E2E channel establishment
(certificate-based DTLS handshake) on the client.
The number of wireless hops a↵ects the idle time.

istic encryption. Unfortunately, Blowfish is not supported
in hardware. Our ported Blowfish implementation requires
380 Byte of RAM and 4168 Byte of ROM. For DTLS integra-
tion, we modify the tinyDTLS6 implementation to support
by demand cryptographic accelerator or software implemen-
tation (i.e., Relic Toolkit). Moreover, we extend it with a
basic X.509 certificate parser.

5. EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation of

Talos on OpenMotes, representing a typical IoT device. We
do not discuss the performance of the Cloud database, rep-
resented by a modified and extended version of CryptDB
instance, as it is not the core of our contribution. How-
ever, we quantify the network overhead of Talos during its
interaction with the Cloud database.
In the following, we first define our evaluation objectives,

describe the setup, metrics, and methodology. We continue
in §5.1 with a brief discussion of our results for secure E2E
communication, followed by a detailed discussion of our
results for encrypted data processing in §5.2.

Goals. Throughout this section, we intend to answer
the following questions: (a) is Talos feasible on resource
constrained devices? (b) what is the overhead of Talos in
terms of computation, energy, and bandwidth? (c) what is
the impact of the availability of cryptographic accelerators
on the performance and feasibility of Talos?

Evaluation Setup. For our evaluation, we rely on
Flocklab [42], a public wireless sensor network testbed.
Flocklab7 supports over the Internet communication of
sensor nodes with a remote host, thus emulating IoT
scenarios. Our Cloud database resides on a normal desk-
top connected via Internet to Flocklab nodes, with an
average transmission delay of 10 ms. Our communica-
tion setup involves at least one wireless hop within Flocklab.

Metrics. We quantify the impact of Talos in terms of
computation and communication overheads, and calculate
the corresponding energy consumption. All tests are
repeated at least 100 times, if not indicated otherwise.
Standard deviation is reported only when not negligible,
since it is mostly the case with CPU computation on a
non-preemptive OS. Inspired by TinySec [38], we use the
metrics Byte-time and Byte-energy to put computation in
relation to radio transmission time and energy. In other
words, we normalize our time measurements based on the
transmission time of 1 Byte in 802.15.4 (i.e., 32 µs) and

6tinyDTLS; http://tinydtls.sourceforge.net/
7For our project, we extended Flocklab with OpenMotes:
flocklab.ethz.ch



Figure 7: Secure E2E channel (AES-CCM, SHA256)
with support of cryptographic accelerator (HW)
compared to pure software implementation (SW).

the energy measurements based on the energy required to
transmit 1 Byte on OpenMotes (i.e., 1.613 µJ). The latter is
calculated as: transmission time ⇥ voltage ⇥ transmission
current = 32 µs ⇥ 2.1 V ⇥ 24 mA = 1.163 µJ.

Methodology. We verify the current draw in our crypto
functions by utilizing a mixed signal oscilloscope, as sum-
marized in Table 3. We then characterize the accuracy of
system clocks, which we use for time measurements8. To
this end, we use digital inputs of our oscilloscope connected
to OpenMote pins to encode the start and end of events.
We rely on Contiki’s timer with a resolution of 30 µs and a
dedicated hardware timer with an accuracy of 1 µs. We mea-
sured a maximum timer inaccuracy of 0.4%. Additionally,
we leverage the energy measurement features of Flocklab
during our evaluation.

5.1 Secure E2E Communication
Talos employs the certificate-based DTLS to establish a

secure E2E channel. Due to space limitations, we only
briefly discuss the DTLS results.
In our setup, a DTLS client from Flocklab establishes a se-

cure channel with the Internet host. The handshake, since
it involves public-key-based operations (ECDSA, ECDH),
is the most expensive part of a secure E2E channel. The
public-key-based operations contribute to the major part
(90%) of the total energy consumption per handshake
(65.4 mJ). Hence, a DTLS session should be kept alive as
long as possible, for instance by means of session resump-
tion [35]. Note, the cryptographic accelerator allows con-
current computations on the main CPU. Hence, during the
long computations ideally other tasks could be scheduled.
Table 4 lists the computation time and energy costs of the

di↵erent components of a handshake. The total duration of
the handshake is mainly impacted by the number of the
wireless hops, as indicated by the time spent in idle state.
How much energy is drained in this state depends on the
specific MAC layer in use, e.g., the level of radio duty cycling
and the sleep mode.
Once the session is established and the keying material is

agreed upon, a modest crypto overhead is caused by AES-
CCM. AES-CCM has a performance between 31 to 55 µs
for 16 to 128 Byte packets, as depicted in Figure 7. This
overhead is considerably larger when using software (i.e.,
293 to 1311 µs). Although the crypto accelerator draws
about 13% more current, its faster execution time leads to
energy savings by a factor of up to 20 for full frames (see
Table 6). More importantly, the computation of AES-CCM

8We open-source our test interface utilizing accurate system
timers (see footnote 3).

Algorithm Input Size [Byte]
4-8 16 64 128

AES-ECB - 0.9 µJ 1.1 µJ 1.4 µJ
-CBC - 0.9 µJ 1.1 µJ 1.4 µJ
-CMC - 2.1 µJ 4.8 µJ 8.5 µJ

Blowfish-ECB 1 µJ 2 µJ 8 µJ 16 µJ
Paillier 88-91 mJ 99 mJ 128 mJ 171 mJ
EC-ElGamal 11-23 mJ 46 mJ 184 mJ 368 mJ

Table 5: Energy consumption of data-protection
components of Talos based on the current values in
Table 3. Except for Blowfish, all crypto operations
utilize the hardware crypto engine.

in hardware can run in parallel to the transmission of the
preamble (8 symbols ⇥ 16 µs = 128 µs)
Note that the steps in Figure 7 in the software implemen-

tation are due to padding to a full block size. AES has a
block size of 16 Byte, hence the steps are at 16 Byte steps.
SHA has a block size of 64 Byte. The e↵ect due to padding
is optimized in the pure hardware-based modes.

Communication Engine Input Size [Byte]
16 64 128

AES-CCM Hardware 8.7 µJ 9.4 µJ 10 µJ
Relic 19.7 µJ 38.8 µJ 64 µJ

Table 6: Energy consumption of AES-CCM. The
comparison to software implementation shows the
energy gain of hardware accelerator.

5.2 Encrypted Data Processing
To support encrypted data processing, Talos utilizes four

types of encryption. The strongest level of security is pro-
vided by probabilistic encryption (RAND), additive homo-
morphic encryption (HOM), followed by determinist encryp-
tion (DET), and order-preserving encoding (OPE). Each
of these schemes comes with certain security-functionality
tradeo↵s, discussed in §3. In the following, we first discuss
the performance of the individual crypto algorithms, and
then elaborate on the overall system performance.

5.2.1 Microbenchmarks

We now discuss the time and energy measurements
of the individual crypto algorithms, as summarized in
Figure 8 and Table 5, respectively. The performance results
combined with the ciphertext overheads of each algorithm
(see Table 1) contributed to the design decisions in Talos.

RAND/DET. For random and deterministic encryp-
tions, we employ various types of symmetric block cipher
encryptions (AES and Blowfish). We utilize the crypto-
graphic accelerator for AES modes, however, our Blowfish is
software-based. Blowfish is known for its long initialization
phase after setting the key, which in our case amounts to
12 ms, independent of the key size. Since in Talos the key is
rarely changed, this overhead is acceptable. Blowfish with
23.5 µs shows a modest performance, in the same order as
AES-ECB (14 µs) and AES-CBC (18 µs). Note that AES in
software is by factor 3 to 10 slower, depending on plaintext
size.
As shown in Figure 8(a), Blowfish, which has a blocksize

of 8 Byte, quickly becomes expensive for large data. Con-
sequently, Talos uses Blowfish for data 8 Byte. Among
the di↵erent AES modes (ECB, CBC, CMC), AES-CMC
has the highest overhead. This is due to the fact that



(a) Symmetric block cipher encryption, as used in random
and deterministic encryption schemes. Except for Blowfish,

which is implemented in software (SW), the remaining
ciphers utilize the cryptographic accelerator (HW).

(b) Additive homomorphic encryption by means of Paillier
utilizing the cryptographic accelerator (HW). Paillier’s
plaintext-size can be as large as the key size, in our case

1024 bit (128 Byte).

Figure 8: Microbenchmark of the cryptographic algorithms in Talos on a typical IoT device (i.e., OpenMote).

AES-CMC applies AES-CBC twice in order to avoid early
block leakage. Talos limits the use of AES-CMC only for
data ≥16 Byte.

OPE. The traditional OPE, as introduced by
Boldyreva [9], relies on the hypergeometric distribu-
tion (HGD). HGD is computationally intensive and in
similar orders as Paillier. Talos utilizes mOPE which is
about 2 orders of magnitude more efficient than OPE.
This is due to the fact that mOPE employs deterministic
encryption (in our case Blowfish). Since mOPE requires
interaction with the Cloud, we elaborate on its performance
aspects in the following section.

HOM. Additive homomorphic encryption is the most
expensive cipher in Talos. Paillier encryption starts with
1,619 ms for 4 Byte plaintext and increases linearly to
3,142 ms for 128 Byte plaintext. Decryption time is constant
at 1,593 ms. Note that decryption is typically performed on
more powerful devices. Paillier’s performance in software is
by factor 6 slower.
With EC-ElGamal we explored an alternative additive ho-

momorphic encryption to the Paillier cryptosystem. EC-
ElGamal’s performance, since based on EC-points, is input-
length independent. EC-ElGamal encryption takes 210 ms,
whereas the decryption with 95 ms is by factor 2 faster. The
210 ms encryption time already includes a maximum upper
bound of 20 ms for mapping a 32-bit value into the EC space
(8-bit values require only 9 ms).
The homomorphic encryption with both Paillier and EC-

ElGamal is energy intensive (see Table 5). For 4 Byte plain-
text, this amounts to 88 mJ and 11.42 mJ, respectively. Note
that this is equivalent to 76 and 9.8 kB-energy, respectively.
Paillier’s energy consumption in software is by factor 7.5
higher, which renders it significantly costly and not suitable
for IoT.

5.2.2 System Performance

We now assess the overall performance of Talos with
focus on the two schemes of order-persevering and addi-
tive homomorphic encryptions. Moreover, we discuss the
impact of Talos on the lifetime of a battery-based IoT device.

mOPE. With mOPE we trade computation for commu-
nication. In §3.2, we discussed how to reduce the number
of interactions in mOPE by tuning the k-ary tree to hold
up to 10 values (k=10). Figure 9 depicts the total time of

interactions in mOPE, based on the number of interaction
rounds for k=4 and k=10. The interaction time is impacted
by the transmission delay of our setup, which consists of one
wireless hop.
The average roundtrip time (RTT) per interaction is

higher for k=10 (68 ms) than k=4 (53 ms) because pack-
ets carry in average more elements. Similarly, the per in-
teraction CPU time is for k=10 (314 µs) 19% higher than
k=4 (264 µs). This is because in average more item decryp-
tions are needed for the comparisons. However, in total is
k=10 several times more efficient than k=4. As depicted in
Figure 9, with 103 items in the database, mOPE with k=4
requires 9 interactions, whereas k=10 needs only 4. This is
200 ms faster than k=4. This trend continues and we ex-
perience with 105 items in the database 12 interactions for
k=4 and only 6 interaction for k=10 (250 ms faster).
The IoT device can ideally utilize radio duty cycle

techniques to reduce its energy consumption to an optimal
of transmission and reception of the query and response
packets of the interaction process. Assuming more than
105 items in the database, adding new items requires 6 in-
teraction rounds which involves transmission and reception
of 12 packets. This results into an energy consumption of
1.3 mJ. Assuming an optimistic lower bound of 1,600 ms
computation time for the traditional OPE, shows that
mOPE is 2 orders of magnitude more efficient than OPE.

HOM. Paillier, as discussed earlier, is computationally
very expensive (encryption time is between 1.6 to 3.1 s). Its
cost is prohibitive especially when compared to the encryp-
tion time of EC-ElGamal (210 ms), an alternative HOM. In
order to render Paillier more efficient, we optimized it to
pack several values into a single plaintext. This amortizes
the expensive Paillier encryption among several values. As
depicted in Figure 10, the energy per item reduces as the
number of packed items increases.
EC-ElGamal, which operates on 32-bit plaintext values,

consumes 11.42 mJ, and thus depicts the lower energy bud-
get for HOM encryptions. In order to reach the same per
item energy efficiency as EC-ElGamal, our optimized Paillier
must pack fourteen 32-bit plaintext values. Working with
16-bit plaintext values allows to pack 32 items in one plain-
text. This results in an optimal energy efficiency, by a factor
2 better than by EC-ElGamal. The possibility of packing
values, however, is application scenario-dependent. In order
to remain as generic as possible, we use EC-ElGamal as the
default HOM for Talos.



Figure 9: mOPE. Time of an insert operation based
on the number of interactions for up to 105 items.
Client is one wireless hop away from the gateway in
Flocklab. Average RTT per interaction is 53 ms for
k=4 and 68 ms for k=10. The per interaction CPU
time is 264 µs for k=4 and 314 µs for k=10.

Energy. Talos significantly impacts the lifetime of a
battery-based IoT device, specifically due to the involved
crypto operations. This is an inevitable tradeo↵ that comes
with higher security. We assume two AAA alkaline batteries
with a typical capacity of 3 Wh (10.8 kJ) and a targeted
lifespan of one year. This results into a daily energy
budget of 29.6 J. To put this into perspective, with 20% of
the daily budget (5.92 J), Talos is capable of performing:
90 DTLS handshakes, 518 EC-ElGamal based homomorphic
encryptions, 5.92⇥106 random or deterministic encryptions
of 32-bit values, or 5381 mOPEs (5 interactions).

Case Study. To have a better understanding about the
applicability of Talos, let us again consider the application
scenario of the health monitoring device which logs heart
rate, location, and timestamps. As we described in §1, the
logged items have di↵erent sensitivities. For instance, the
heart rate measurements have the highest sensitivity, since
they can be used to infer health-related information (e.g.,
stress, depression, or diseases). Hence, Talos protects heart
rate with additive homomorphic encryption to provide se-
mantic security and allow average and summation compu-
tations. Health monitoring devices9 typically sample at 1 Hz
(every 1 s) during sport activities and 6 times per hour oth-
erwise. For a person with 1 h sport activity per day, this
would result into a daily 3,738 data items encrypted with ad-
ditive homomorphic encryption. The location, logged every
15 min, is maybe less sensitive for this person and could be
encrypted with deterministic encryption, to allow encrypted
queries correlating heart rate with a given location. Hereby,
the timestamp for each heart rate record could be encrypted
with the order-preserving encryption, to allow ordering, but
not revealing the actual time.
Assuming the same underlying platform we used in our

evaluation, the total daily energy cost of additive homomor-
phic, deterministic, and order-preserving encryptions in this
scenario accounts to a total of 42.67 J per day. This would
contribute to a modest 5.4% of the daily energy budget of
a Fitbit device with 5 days lifetime and a lithium-polymer
battery capacity of 1.2 Wh (4.32 kJ).

6. DISCUSSION
This paper provides a proof-of-concept of the potential

and feasibility of building secure systems that address data

9Microsoft Band: http://www.windowscentral.com/

how-often-microsoft-band-checks-your-heart-rate

Figure 10: Additive homomorphic encryption. Our
optimized Paillier is more efficient than original Pail-
lier and can reach the efficiency of EC-ElGamal.

privacy concerns in the IoT ecosystem. However, more
research is needed to realize the full potential of Talos. Here
we address some practical challenges and research points
that assist in evolving Talos further.

Energy. The feasibility of Talos for IoT devices is driven by
its energy efficiency. Although security comes at a price, the
price should not hinder the usability of the system. We show
that with a modest energy budget, Talos can be integrated
on IoT devices providing strong network and data security
guarantees. We achieve this by making the employed HOM
and OPE schemes one order of magnitude more efficient.
However, there is still potential for further optimizations,
specifically for HOM, which with EC-ElGamal still ac-
counts for a considerable amount of the energy consumption.

Hardware Accelerator. We explore the impact of
hardware crypto accelerator on the feasibility of Talos.
The hardware accelerator, which utilizes a separated core
(running at 250 MHz), drains with 26 mA a higher current
than the main core at 32 MHz (20 mA). The higher
frequency and consequently lower computation time results
into significant energy savings (by a factor of 2 to 20), as
compared to pure software operations. More importantly, a
separate core for crypto operations allows utilizing the main
core for other tasks. This results into an active main core,
instead of idle, as considered in our evaluation (draining
a total of 33 mA for both cores). Hence, an optimal task
scheduling would increase the energy efficiency of our
system several times higher.

Security Analysis. Talos meets the security goals and
efficiency requirements outlined in §2.2. With our effi-
cient public-key-based E2E secure channel (DTLS), Talos
defends against network-based threats. The encryption
applied by Talos protects the data against curious database
administrators and database compromises. Since we utilize
order-preserving encryption and deterministic encryption,
we allow leakage of order and equality information for
less sensitive data. Sophisticated attacks could potentially
misuse the gained information from this leakage. Hence,
future steps should address this shortcoming of Talos.

Alternative Crypto Primitives. Recent advances in
theoretical cryptography and careful optimization of crypto
mechanisms allow us to build practical secure systems,
such as Talos, in a novel fashion that inherently address
data privacy issues through facilitating computation on
encrypted data. We are currently witnessing improvements
in the computational efficiency of fully homomorphic
encryption [24, 25]. The already achieved improvements of



6 orders of magnitude in the past decade could be further
enhanced in the near future. Talos is yet bound to schemes
with reasonable efficiency, however our general system
design is not bound to particular schemes.

Fully Homomorphic Encryption (FHE). In Talos, we
rely on additive (rather than fully) homomorphic encryp-
tion. We measured additive homomorphic encryption to be
5 orders of magnitude slower than AES, which makes it the
bottleneck of our system. Hence, despite recent e↵orts in
rendering FHE more efficient, we do not foresee FHE to be
soon feasible for IoT devices. However, with GHS [25], an
approach of homomorphic evaluation of AES circuit, there
is hope that the benefits of FHE can find their way into
IoT. GHS transforms AES ciphertexts, without access to
the plaintext, into a FHE-compatible form where arbitrary
computations over the hidden plaintext are possible.

7. RELATED WORK
We now discuss work related to Talos grouped in the

following four categories:

E2E Security. Early e↵orts to bring security to WSN
explored low-power cryptographic approaches [43,49], which
facilitated research on secure communication protocols for
IoT. Hummen et al. [35] introduce a handshake delegation
scheme which allows highly constrained devices without the
capability of performing public-key-based operations to still
benefit from the scalability and security of public-key-based
handshakes. Hu et al. [33] investigated the feasibility and
advantages of hardware accelerators on low-power devices.

Privacy-Preserving Cryptography. There has been sig-
nificant amount of work on cryptographic schemes [7, 10,
11,26,27,44,60] that could be utilized in privacy-preserving
computations. Gentry’s work [23,24] marks a breakthrough
in cryptography showing an implementable fully homomor-
phic encryption (FHE) scheme. Since then, his work has
been incrementally enhanced up to 6 orders of magnitudes
by the research community [25]. Prior to Gentry’s work, the
focus was on partial homomorphic encryption, where only
one type of computation, such as multiplication or addition
is supported [12,14,34].
Although FHE provides semantic security and supports at

the same time arbitrary computations over encrypted data,
it is not yet best suited for encrypted query processing. This
is due to both its prohibitive cost and the fact that the Cloud
must process all existing data in database for queries such
as equality check or comparison. This is the main reason of
using weaker encryption schemes such as OPE and DET to
allow the database to reduce the scope of computation.
Secure multi-party computation approaches [3,32] are effi-

cient for simple functions, however become computationally
expensive for general functions. Moreover, MPC involves
high interactions, large bandwidth, and coordination among
the involved parties. Secure in-network processing of aggre-
gate queries was introduced for WSNs [16, 52]. This would
increase the security of approaches providing a distributed
database interface for WSNs, such as TinyDB [46].
Di↵erential privacy [19] assumes a trusted server, which

obfuscates answers to avoid leaking information about data
items and the query patterns.

Computation on Encrypted Data. Perrig et al. [17] in-
troduced an efficient search over encrypted text files. This
is achieved by deterministically encrypting metadata of files
which are protected with strong encryption, i.e., probabilis-
tic. Perrig et al.’s e↵orts paved the way for more advanced
systems enabling encrypted query processing [36, 53, 54],
among them CryptDB [53] which we discussed in depth
in §2. Mylar [54] introduces a multi-key searchable en-
cryption scheme, exemplified for smartphone applications.
Mylar protects the content of documents and the searched
words from the untrusted server.
Goldwasser et al. [15] introduce an innovative and

sophisticated approach for machine learning classification
over encrypted data. This approach is complementary to
ours and would allow support for a wider range of data types.

Cloud Security. Commercial Cloud database services,
such as Google [29], encrypt data before storage, however,
the queries are still processed over plaintext data. Secure
data storage is an essential measure and complementary to
our approach. Utilizing a local trusted machine [5, 6] at the
database is an alternative approach to encrypted query pro-
cessing. This, however, implies that the user considers the
trusted hardware trustworthy.

8. CONCLUSION
We presented Talos, a practical secure system that pro-

vides strong communication and data security features for
privacy-preserving IoT applications. Talos leverages and
tailors cryptographic primitives that allow computation on
encrypted data without disclosing decryption keys to the
Cloud. To achieve this, we utilize optimized encryption
schemes, specifically for the expensive additive homomor-
phic and order-preserving encryptions, accelerating them by
1 to 2 orders of magnitude.
We show the practicality and feasibility of Talos through

an implementation and experimental evaluation considering
both micro-benchmarking and system performance. Talos
copes with the limited energy budget of constrained devices
and requires a modest energy budget to provide a higher
security level. Advancements in Computing on Encrypted
Data appear to be increasingly significant to the progres-
sion of data privacy and security. Talos is the first system
to address energy and computation concerns for integrating
encrypted query processing into IoT systems. We anticipate
that Talos will facilitate further research in this direction.

9. ACKNOWLEDGMENTS
The authors would like to express their gratitude to

Raluca Ada Popa and Björn Tackmann for the insightful
discussions during design phase of Talos. We thank Friede-
mann Mattern and Wilhelm Kleiminger for their comments
on earlier versions of this paper. Moreover, we are thank-
ful to the anonymous reviewers and our shepherd, Lu Su,
for their valuable feedback. We thank Lukas Burkhalter
for the support with the smartphone-related development.
We would like to thank the Flocklab team, specially Ro-
man Lim, for the support for extending Flocklab with Open-
Motes. This work was partly funded by the European Com-
mission through Nobel Grid (H2020-646184) and VINNOVA
(Sweden’s Innovation Agency).



10. REFERENCES
[1] A. Chen. GCreep: Google Engineer Stalked Teens,

Spied on Chats, Gawker. Online:
www.gawker.com/5637234, 2010.

[2] A. Perrig, J. Stankovic, and D. Wagner. Security in
Wireless Sensor Networks. Communications of the
ACM, 47(6):53–57, June 2004.

[3] Andrew C. Yao. Protocols for Secure Computations.
In Annual Symposium on Foundations of Computer
Science (SFCS), 1982.

[4] D. F. Aranha and C. P. L. Gouvêa. RELIC is an
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