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ABSTRACT

IoT applications often utilize the cloud to store and provide ubiqui-
tous access to collected data. This naturally facilitates data sharing
with third-party services and other users, but bears privacy risks,
due to data breaches or unauthorized trades with user data. To
address these concerns, we present Pilatus, a data protection plat-
form where the cloud stores only encrypted data, yet is still able
to process certain queries (e.g., range, sum). More importantly,
Pilatus features a novel encrypted data sharing scheme based on re-
encryption, with revocation capabilities and in situ key-update. Our
solution includes a suite of novel techniques that enable efficient
partially homomorphic encryption, decryption, and sharing. We
present performance optimizations that render these cryptographic
tools practical for mobile platforms. We implement a prototype
of Pilatus and evaluate it thoroughly. Our optimizations achieve a
performance gain within one order of magnitude compared to state-
of-the-art realizations; mobile devices can decrypt hundreds of data
points in a few hundred milliseconds. Moreover, we discuss practi-
cal considerations through two example mobile applications (Fitbit
and Ava) that run Pilatus on real-world data.
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1 INTRODUCTION

The Internet of Things (IoT), through embedded devices and wear-
ables, is enabling a whole new spectrum of applications. One of the
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Figure 1: Pilatus can both query and share encrypted data.
The cloud has access to no keys nor any plaintext. Itis able to
process encrypted data (e.g., range, sum queries), as well as
to re-encrypt it, enabling crypto-protected sharing. We also
address revocation, in situ re-keying, and group sharing.
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prominent offerings in this domain is the emerging field of health
and fitness tracking with over 150k [19] applications listed in the
two major smartphone app stores. Examples of such applications
include wristbands that can infer stress level from skin conductance,
sport trackers that can log physical activities, and fertility apps.

The collected data typically consists of sensor readings (e.g., body
temperature, conductance response), activity meta-data (e.g., dura-
tion, type), or health-related symptoms (e.g., migraine headaches,
pain). For scalability, ubiquitous access, and sharing possibilities,
the data is most often stored in the cloud. Transparent and secure
data sharing (e.g., sharing with friends or domain experts) is consid-
ered a key requirement for the practicality and success of typical IoT
systems [31, 52]. Moreover, securing the cloud storage is of utmost
importance, as the data can be used to infer privacy-sensitive infor-
mation, such as heart diseases, personal well-being, and fertility-
related data [5, 15]. The privacy risks of today’s data collection
model are many, including systematic unauthorized disclosure of
personalized data on clouds [7], for personal advertising [43], trad-
ing with insurances [17], and due to external [20] or internal data
breaches (e.g., curious cloud employees [20]).

Challenges. How to benefit from cloud computing (i.e., storage
and query processing) without compromising data control and se-
curity? Storing encrypted data with traditional symmetric encryp-
tion schemes, such as AES, would offer protection but render the
data unsearchable and unshareable. Alternatively, homomorphic
encryption schemes enable arbitrary computation on encrypted
data but are presently impractical [46]. In this paper, we focus on
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Partially Homomorphic Encryption (PHE) and in particular additive
homomorphic schemes. These are practical solutions that enable an
important set of queries [62], such as the sum query on encrypted
data — a common operation in IoT applications when history data
needs summing or averaging. Also note that with limited involve-
ment of the client side, more complex computations (e.g., linear
regression) can also be achieved [62].

How to bring cryptographically guaranteed sharing to the IoT
ecosystem? The current PHE approaches are either targeted at
single-key encrypted data [46, 53, 62] (no support for sharing) or
consider only text-based data [27, 47] (of limited use in an IoT con-
text). Talos [51, 53] is specifically tailored for IoT scenarios and has
demonstrated PHE on embedded devices, but it does not offer any
sharing features. Existing protocols for sharing, such as OAuth [35],
fall short in providing strong assurances about the policy enforce-
ments. Crypto-based sharing approaches [65], on the other hand,
support no query processing over encrypted data.

In short, existing solutions either support encrypted query pro-
cessing or secure sharing but not both. Moreover, due to their heavy
computational overhead, PHE schemes have been considered un-
suitable for low-power mobile and IoT devices. In this paper, we
tackle the challenges of cryptographically-protected and efficient
sharing of PHE data, as illustrated in Figure 1. Our system is the
first to combine encrypted sharing with encrypted query process-
ing. Furthermore, our system is tailored towards mobile platforms,
improving the state-of-the-art performance by more than one order
of magnitude.

Approach. We introduce Pilatus, which extends Talos [53] with
sharing capabilities. We enable efficient sharing of PHE data based
on a re-encryption scheme [4]. This means that data is (PHE) en-
crypted at the client (IoT device/gateway) and uploaded to the cloud.
When data owner Alice intends to share her data with Bob, she
computes a token that enables the cloud to re-encrypt her data for
Bob (without decrypting it first). The same process is used for Alice
to share her data with a group. With only public keys and tokens (no
secret keys nor plaintext information), the cloud is able to perform
query and sharing operations directly on ciphertexts. Users can
decide between sharing their individual data points (necessary for
complex analytics) or aggregated results, both in encrypted form.

Further, we design a key revocation mechanism that allows users
to terminate their data sharing at any time. We also propose an in
situ key-update at the cloud, such that old data becomes protected
with the owner’s new key, without trusting the cloud with any
private keys.

Our solutions build on the Elliptic Curve (EC)-based partially ho-
momorphic encryption. Hence, a major challenge is to minimize the
decryption time of our EC-based cryptosystems, for both sharing
and encrypted processing. We address the performance optimiza-
tion with the Chinese Remainder Theorem, which enables smaller,
faster, and parallel computations. We keep the induced overheads
low enough to preserve the user experience (i.e., below 1 s response
time [41], including network latency) such that users can interact
with their remotely stored data seamlessly.

Contributions. In summary, this paper makes the following con-
tributions:
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e We introduce a practical construction for sharing of PHE IoT
data, with a sharing revocation mechanism that also allows
in situ re-keying of the ciphertexts in the cloud;

e We improve the underlying cryptosystems’ decryption time
by one order of magnitude compared to state-of-the-art real-
izations such as Talos [53] and CryptDB [46];

e We design and implement Pilatus, a system that extends Ta-
los with the above sharing schemes and with the necessary
features for a practical sharing-enabled cloud storage;

o We assess the efficiency of Pilatus through end-to-end and mi-
cro benchmarks, in Amazon cloud, on mobile devices, and to
a lesser extent on low-power sensor devices. We also present
two case study apps running Pilatus: the Fitbit fitness tracker
and the Ava fertility tracker [5]. We make our prototype im-
plementation of Pilatus publicly available!.

2 THREAT MODEL

We focus on IoT applications where data from wear-
ables/smartphones are stored on third party clouds. We consider
the following parties: the cloud (consisting of a front-end server
and the database), clients (apps), and an Identity Provider (IDP) to
certify the public key of each user.

Threats. Pilatus considers the cloud service to be honest-but-
curious, such that it will follow the protocol correctly, but tries
to learn as much as possible from the stored data. This is a valid
model, as protocol violations, once detected, could penalize the
service provider. At the same time, the adversary might be eager
to learn more about user data without being noticed (i.e., passive).
External adversaries can also gain access to the encrypted data as
a consequence of system compromise. In summary, we consider
cloud-side threats which are due to system compromise (e.g., data
theft), financial incentives (e.g., unauthorized trades with users
data), or malicious insiders (e.g., curious admins).

Assumptions. In addition to the honest-but-curious cloud assump-
tion, Pilatus assumes that the IDP correctly verifies users’ identity-
key pairs. The IDP is a standard requirement in multi-user systems
and can be a known and trustworthy external entity or an inter-
nal unit. Group members of shared data are semi-trusted, in that
they do not collude with the cloud to leak the group data or key.
This is a reasonable assumption for small groups where members
are acquainted with each other. Moreover, Pilatus assumes that
the applications behave correctly and do not hand out user keys
to malicious parties. Finally, we assume state-of-the-art security
mechanisms to be in place for device security and that all parties
communicate over secure channels.

Guarantees. Pilatus protects the confidentiality of users data
stored in the cloud in the presence of passive adversaries (e.g.,
compromised servers). In case the user device is compromised
and group keys are disclosed, only data of the compromised user
and the affected group are disclosed. Pilatus cryptographically pre-
vents unauthorized data access. Pilatus provides user authentication
mechanisms but does not guarantee freshness or correctness of

!pilatus is available at https://github.com/Talos-crypto/Pilatus
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the retrieved data. In order to provide such guarantees, one could
complement our system with integrity protection frameworks such
as Verena [32]. Pilatus does not hide access patterns, which can
potentially reveal sensitive information [29].

3 PILATUS OVERVIEW

We briefly introduce the requirements of the applications we target
and then present the architecture of Pilatus.

3.1 Applications

Pilatus focuses on applications collecting sensitive data that require
processing and sharing. Examples of such applications include
fitness or health trackers. These applications store private data in
the cloud that can reveal privacy-sensitive information, e.g., illness,
lifestyle, or location. For instance, Fitbit wristbands collect a user’s
heart rate, step counts, and location data. Similarly, certain health
tracking applications and wearables, such as Ava [5], allow women
to track their menstrual cycle, predict (in)fertile phases, and detect
potential health issues. Though insightful, logging such private
information raises serious privacy concerns.

Secure and transparent sharing plays an essential role in bringing
such fitness- and health-related apps to their full potential. When
users are willing to share data with experts (e.g., medical practition-
ers), analytical services, or just casually with friends, they must be
in full control over who can access and what can be accessed. More-
over, there is a need for query processing capabilities directly in
the cloud, since downloading the entire data volume for on-device
processing becomes impractical as the data grows. For instance,
in Fitbit and Ava, the mobile apps typically display total sums or
averaged values (e.g., heart rate) over a given period of time.

To satisfy the above requirements, Pilatus facilitates storing
encrypted IoT data in the cloud, while enabling processing and
cryptographically-protected sharing of encrypted data. In §7.2, we
show that our Pilatus-based app prototypes Ava and Fitbit induce
only a modest overhead (i.e., a maximum of 130 ms) while inter-
acting with encrypted data. Note that while the focus of this paper
is on health and fitness applications, our system design and appli-
cation discussions apply as well to other IoT applications (smart
homes, connected cars, etc.).

3.2 Architecture

Pilatus, as an extension of Talos, uses Partially Homomorphic En-
cryption (PHE) schemes to enable query processing over encrypted
data in the cloud. It offers a new scheme for secure sharing of
PHE data among users and groups, based on re-encryption tech-
niques. Our sharing feature includes access revocation with in situ
re-keying. We optimize the performance of the underlying crypto-
graphic schemes by one order of magnitude to make them practical
on mobile devices. Note that Pilatus inherits the order-preserving
encryption from Talos for range queries. Together with PHE, this
enables querying a sum/average over a range of timestamps or any
other relevant combination of metadata?.

Pilatus consists of three main components: the client engine, the
cloud engine, and an identity provider, as depicted in Figure 2.

2We apply range queries to data types that are of high entropy from a sparse domain
to avoid any data leakage due to inference attacks [40].
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Figure 2: Pilatus architecture. The client engine performs en-
/decryptions, such that the cloud only stores encrypted data.
The cloud engine performs encrypted query processing and
necessary re-encryptions for data sharing.

Client Engine. The client engine runs on the user side and is
the only component with access to keying material. It is primar-
ily designed for users’ personal mobile platforms, such as smart-
phones. It interacts with the IDP to verify the ID-to-key bindings
and with the cloud engine for secure storage, sharing, and retriev-
ing of data. More specifically, it encrypts, decrypts, handles the
keys, and sharing-related activities such as joining new groups, is-
suing delegated access rights (i.e., re-encryption tokens), triggering
revocation, and re-keying. For constrained IoT devices (sensors),
we have a stripped-down client engine with limited functionality,
such as encryption to store PHE encrypted data in the cloud.

Cloud Engine. The cloud engine is application-agnostic and pro-
vides the basic database interface and features. It stores data and
processes queries from the client engine. The cloud engine has
only access to data in encrypted form. It supports the algorithms
required for processing encrypted data, i.e., homomorphic addition,
re-encryption, and in-situ re-keying. Our design is currently tar-
geted for structural databases (i.e., MySQL) and uses User-Defined
Functions to replace the default routines with crypto-enabled ones
(see §6 for details).

Identity Provider. The IDP is an independent party responsible
for verifying the user identity to public key bindings. The IDP is
used by the client engine to search for the public key of another
user or group. Pilatus is independent of the IDP and outsources
this role to systems such as Keybase [34], that provide provable
identity-key bindings, by utilizing prevalent social media channels
and online accounts (i.e., users prove their identity by posting an
individual token on Twitter, Facebook, Github, etc.).

4 CRYPTOGRAPHIC BACKGROUND

We present here the necessary cryptographic background to help
understand the Pilatus design.

4.1 Partial Homomorphic Encryption

Partial Homomorphic Encryption (PHE) schemes allow the com-
putation of certain mathematical operations over encrypted data.
For instance, additive homomorphic schemes, such as the Pail-
lier cryptosystem [44], support the addition of ciphertexts, such
that the result is equal to the addition of the plaintext values (i.e.,
ENC(mj) 0 ENC(mg) = ENC(m1 + my)).
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Figure 3: Plaintext to EC point mapping before encryption
and after decryption.

The Elliptic Curve (EC) version of the ElGamal cryptosystem is
an alternative additive homomorphic scheme, used in Talos and Pi-
latus. EC-ElGamal’s security is based on the EC Discrete Logarithm
Problem (ECDLP) [57]. It provides semantic security (i.e., IND-CPA
under the assumption of decisional Diffie-Hellman). A challenge
in making practical use of EC-ElGamal is that it operates over EC
points rather than arbitrary messages. Hence, one needs a scheme
that maps an integer to an EC point (and back), while preserving
the homomorphic property of EC-ElGamal.

Talos, which focuses on IoT data, uses a theoretical method [57]
that becomes practical for small integer data, e.g., 32-bit (frequent
in IoT scenarios, to represent an integer or fixed point number) [53].
The process is as follows: to map an integer m to an EC point M, m is
multiplied by a publicly known point G on the curve: M = mG. After
decryption, M must, however, be mapped back to m. This requires
solving an ECDLP. Although this is computationally infeasible for
large numbers, solving it for smaller than 32-bit integers can be
realized in a reasonable time with, e.g., the Baby-Step-Giant-Step
(BSGS) algorithm (this is equivalent to breaking 32-bit security).
Note that this mapping procedure, as depicted in Figure 3, does not
affect the overall security: the ECDLP is solved to obtain m from
M, but M itself is protected with strong cryptography, in this case,
80-bit or 128-bit security.

Pilatus inherits this scheme from Talos, but presents additional
optimizations to speed up the process by one order of magnitude,
as discussed in §5.2.

4.2 Re-Encryption

Re-Encryption (RE) enables a proxy to convert ciphertexts under
Alice’s key to ciphertexts under Bob’s key, without disclosing the
plaintext. Hence Alice can share data with Bob, without sharing her
private key nor performing any encryption for Bob on her personal
device.

The AFGH [4] RE scheme relies on pairing-based cryptography.
AFGH defines next to the standard functions key generation, encryp-
tion, and decryption, two additional functions: re-encryption-token
generation and re-encryption. The former is used by Alice to gener-
ate the re-encryption token for Bob, based on her own private key
and Bob’s public key. The latter performs the re-encryption from
Alice to Bob given the ciphertext is encrypted under Alice’s public
key.

At a higher abstraction, pairings (or bilinear maps) establish
a relationship between two cryptographic groups. In AFGH, re-
encryption consists in transforming a ciphertext from the first
group to the second group. The underlying pairing in AFGH is
essentially a bilinear map [11] which, given a cyclic group G of
prime order g, has the following property for a,b € Zgand g, h € G:
e(g%, hby = e(g, h)?. Such maps can be realized with the Weil
and Tate pairings, which are efficiently computable with Miller’s
algorithm [39]. However, designing efficient pairings is an ongoing
research topic [2].
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Figure 4: Encrypted query processing. The data is encrypted
with Alice’s public key. Computations take place in the
cloud, on ciphertexts. The result is decrypted with Alice’s
private key.

More formally, AFGH defines the system parameters as (g, €, Z,
G, G;), whereg € G, Z =e(g,g) € G; and e as the map: GXG — Gy.
G and Gy are both cyclic groups of the same prime order. The user
Alice computes her public key as pk, = g and her private key
as sk, = a. Alice can issue Bob the re-encryption token based on
his public key pk; as the Token,_,; = pk;/a = ¢gb/% ¢ G. The
encryption of m is performed as:

Ca = (mZ",g"") (1)

where r is a random number. Note that the ciphertext C, is com-
posed of two components, similar to the EC-ElGamal ciphertext.
A proxy with access to Token,_,; performs the re-encryption by
transforming the second component of Cy:

Cp = (mZ",Z"), with 28" = e(g®", ¢*/%) )

Bob can now decrypt the ciphertext C,, with his private secret
skp = b and the pairing Z as:
mZ"
m= (Zbr)l/b (3)
In §5.1.2, we show how to employ AFGH in an efficient additive
homomorphic context. The cloud serves as the proxy, in charge of
re-encrypting data of a user to another user or group.

5 PILATUS DESIGN

This section presents our EC-based encryption for sharing of PHE
data and discusses aspects such as performance optimization, revo-
cation, and authorization.

5.1 Processing and Sharing Encrypted Data

We present Pilatus’s two modes of operation: Standard Mode and
Data Sharing. The former covers the single-key case, while the latter
enables cryptographically-protected sharing. Both modes exhibit
additive homomorphic properties, as illustrated in Figure 4.

5.1.1 Standard Mode. When uploading data that is not intended
for sharing, the Pilatus client engine selects the standard mode. The
standard mode is mostly inherited from Talos and uses EC-Elgamal
as an additive homomorphic encryption scheme (§4.1). However,
the decryption in Talos suffers from an exponential increase of com-
putational costs for larger integer values, as shown in Figure 6. In
§5.2, we introduce our optimizations to overcome this shortcoming
and accelerate decryption and enable the use of integers larger than
32-bit as plaintext.
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Figure 5: Data sharing (re-encryption). Alice generates a to-
ken, from her private key and Bob’s public key. The cloud
uses the token to re-encrypt Alice’s data as Bob’s data. Bob
can in turn decrypt with his private key. The same mecha-
nism is used for group sharing. Note that re-encryption is
non-transitive, i.e., the result can not be re-encrypted again.

5.1.2  Data Sharing. In Pilatus, we construct an efficient additive
homomorphic interpretation of AFGH (presented in §4.2). This
enables cryptographically-protected (as opposed to policy-based)
sharing of PHE data, without the need to disclose any private keys
to the cloud. All the cloud needs is a token generated by the owner,
from the owner’s private key and the target user/group’s public
key, as illustrated in Figure 5.

To realize the homomorphic additive property, we use the alge-
braic structure of elliptic curves over finite fields, similar to [64].
Note that bilinear-map-based cryptosystems, such as AFGH, leave
the selection of the underlying pairing-friendly elliptic curve to
implementation. In the recent years, research on optimal paring
curves [21] has further progressed. In Pilatus, we rely on the optimal
Ate pairing [63]3.

To enable the additive homomorphic property, we represent
message m as M = Z™, with Z as the pairing. Given the public key
pka = g? of Alice with g as a generator point in G and the random
r, we encrypt as:

Ca=(Z"Z",pkg) = (Z™",¢°") 4
and re-encrypt for Bob as:
Cp = (Zm+r’Zbr)’ with Zbr — e(gar’gb/a) (5)
With access to the private key b, Bob can decrypt as:
Zm+r Zm+r
= =z" ©

(Zbr)l/b = zr

Note that in the final step of decryption, we still need to map
back M to m (i.e., solving a discrete log problem), which similar
to the standard mode benefits from our performance optimization,
presented in the next section.

The homomorphic addition of two ciphertexts Cp; and Cp, (en-
crypted under Bob’s key) is performed as follows:

Cp1 + Cpa = (Zm1+r1’Zbr1) 1oy (Zm2+r2’Zbr2)

(Zm1+rIZm2+r2 Zbrlzer) — (Zm1+r1+m2+r2 Zbr1+br2) )

(Zml+m2+r1+r2 Zb(r1+r2))

Because AFGH is key-optimal, Pilatus’s storage size for a user
remains constant regardless of the number of users/groups it shares

3The optimal Ate pairing is over Barreto-Naehrigopera curves [2, 8], which are pairing-
friendly elliptic curves of prime order, with embedding degree 12.
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Figure 6: Decryption in EC-ElGamal with the Baby-Step-
Giant-Step algorithm, 80-bit security and 4 threads on
Nexus 5. Smaller plaintexts (23-bit) are decrypted efficiently
(<3 ms), larger plaintexts cause an exponential slowdown.

the data to. Moreover, the re-encryption tokens are unidirectional
and non-transitive. This implies, given Token,_,}, it is only possible
to re-encrypt Alice’s ciphertexts C, to Bob’s ciphertexts Cp,. The
opposite direction is cryptographically not feasible. Additionally,
given Token,_,}; and Tokeny,_, , it is cryptographically not feasible
to transform Alice’s ciphertext to Mallory’s ciphertext.

5.2 Performance Optimization

At decryption, the EC mapping proposed by Talos (see §4.1) requires
solving an ECDLP problem to convert a plaintext EC point to the
original plaintext integer. As discussed earlier, using the Baby-Step-
Giant-Step (BSGS) algorithm we can solve the ECDLP for small
integer values (i.e., <32-bit) within a few milliseconds. However, the
performance of this algorithm decreases exponentially with larger
integers, as depicted in Figure 6 (e.g., already 15 s for decryption of
38-bit integers). This is because with each additional bit the search
space is doubled until it becomes too large to efficiently find the
solution (i.e., computing the discrete logarithm).

This technique has two major shortcomings with regards to our
design: (i) batch decryption can harm user experience, exceeding
1 s with as few as 25 decryptions (32-bit values); (ii) with larger
numbers, e.g., 64-bit integers, this approach becomes impractical.
This demands an optimization that also maintains the homomorphic
property of these schemes.

Approach. Our optimization is based on combining the Chinese
Remainder Theorem (CRT) [28] with the BSGS algorithm. It is
applicable for decryption in both the standard and sharing modes.
With CRT, we reduce solving one difficult ECDLP problem (i.e., a
large integer) to solving several smaller ECDLP problems, for which
the BSGS algorithm performs efficiently, as illustrated in Figure 7.
As BSGS exhibits an exponential cost, our approach can provide
drastic performance improvements.

CRT is used in many cryptographic constructions [16, 57] and
Hu et al. [28] present a formal treatment on how to leverage CRT
for homomorphic encryption schemes. We are the first to utilize the
general CRT optimization in combination with the BSGS algorithm
for an efficient computation of discrete logarithms in a pairing-
based re-encryption.

The CRT technique is based on the simple idea of represent-
ing a number X uniquely by its remainders a; from the following
congruence equations, where n; are co-primes (i.e., gcd(n;, nj) = 1,
Y i,j):

X = a; mod n; (8)
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Figure 7: We optimize the decryption in both standard and
sharing modes, with a technique based on the Chinese Re-
mainder Theorem (CRT) where a larger value is represented
by several smaller ones.

Hereby, N which is the product of all co-primes n; (i.e., N =
[1ni) should be larger than X. With regards to our encryption
schemes (i.e., EC-ElGamal and pairing-based re-encryption), X cor-
responds to the plaintext value which can now be represented with
the remainders a;. Since the remainders are significantly smaller
than X, the decryption is performed more efficiently. Given the
co-primes n; and the remainders a;, X can be efficiently computed,
as:

.
X = ) aiNiyi(mod N) ©)
i=1
where N; = N/n; and y; = Ni_lmod n;. Note that y; and N; remain
unchanged for a given set of co-prime values n; and hence can be
pre-computed in advance.

Realization. To utilize CRT to our benefit, we first compute the
remainders a; and az (assuming two congruences) for a given value
X (i.e., as defined in Equation 8). Now instead of encrypting X, we
encrypt a; and ay. Note that the co-prime values n; and ny are
public information.

Utilizing CRT has the side effect of increased encryption cost
and ciphertext-size (linearly by the number of congruences). For
instance, with 160-bit ECC (80-bit security), the ciphertext-size of
EC-ElGamal increases for 32-bit values from 42 bytes (2 compressed
EC-points) to 84 bytes (4 compressed EC-points), which is still lower
than the ciphertext-size in the Paillier cryptosystem (256 bytes with
80-bit security).

The advantage of CRT becomes apparent while performing de-
cryptions. Instead of solving ECDLP for a large X (which can take
seconds to hours for larger values), we now solve it efficiently
for the remainders (i.e., a1, az). The larger the plaintext value, the
higher the performance gain due to CRT (i.e., several orders of
magnitude for large values). For instance, the 15 s decryption time
for a 38-bit value is reduced to less than 10 ms for EC-ElGamal (see
§7.1.2).

Homomorphism. We discuss here how we keep the additive ho-
momorphic property with our CRT extension. To add two large
integers X, and X}, we add their remainders (a; and b; respectively)

in the corresponding congruences, as follows:

r
Xq+Xp = ) (a; + b))Niy; (mod N) (10)
i=1

This is possible due to modular arithmetic (X, + X, = a; +
bi mod n;). Since our underlying encryption schemes are additive
homomorphic, we can compute the addition of the corresponding

Hossein Shafagh et al.

- | o
Alice (old) Alice (new)
lsecrel l Alice (old) l secret
. — ) — —_ m
Alice (new) Algold) =
secret Alice (new) Alice (new)
Alice Alice

Figure 8: Data revocation (in situ re-keying). Alice builds
a token from both her old and new private keys (none of
which is leaked). The cloud uses the token to re-key Alice’s
data, such that they can now be decrypted with the new key.
Alice can re-key multiple times and apply re-encryption to
re-keyed data.

encrypted remainders, as follows:

ENC(X1) + ENC(X3) =
(ENC(a1), ENC(az)) + (ENC(b1), ENC(b2)) = (11)
ENC(a1 + bl),ENC(az + bz)

Hence, EC-ElGamal and our pairing-based re-encryption remain
additive homomorphic.

5.3 Key Revocation

To authorize data sharing, a data owner issues a cryptographic
token, used by the cloud to re-encrypt users data towards the desti-
nation user. We address here the challenge of terminating such a
data sharing, cryptographically.

Key Update. In Pilatus, when users decide to revoke a data shar-
ing, they simply begin using new keys for new data. This renders
previously issued tokens obsolete and prevents new ciphertexts
cryptographically from being re-encrypted with the old token. Once
new keys are in place, valid sharing relationships are updated with
new tokens such that the sharing flow can be maintained. We dis-
cuss in §5.4 in more details how the data sharing authorization
works with regards to joining and leaving groups. Note that a key
revocation event can as well occur, when the encryption key of the
user is compromised.

We consider two cases for the key update: malicious cloud and
semi-honest cloud. In the former case, we leave old data protected
with old keys. We consider such old data to be in the wild, since
already shared and possibly cached at sharing parties. However,
in the latter case, it is desirable to update the encryption keys of
the old data to the latest keys, for consistent access. Hence, it is
important to devise a secure solution that allows the semi-honest
cloud to perform the re-keying without access to any private key.

In Situ Re-keying. To construct our re-keying mechanism, we
leverage the fact that user Alice has access to both old and new
private keys (a and a’, respectively), neither of which is disclosed
to any party*. Hence, at the time of re-keying, the private keys of
Alice are not compromised.

“Note that in contrast to key homomorphic PRFs (i.e., Pseudo Random Functions) [65],
where a symmetric key is shared between parties, our re-keying scheme is key-private.
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Figure 9: Access graph for group membership.

The re-keying (see Figure 8) is carried out on data, at the cloud,
prior to sharing (i.e., ciphertexts in level-1, as represented in Equa-
tion 4). To this end, Alice issues a key-update token § = a’/a and
the cloud performs the re-keying as follows (only the second com-
ponent of the ciphertext is adjusted):

Ca = (C1,6C3) = (C1,rd’G) (12)

After re-keying, all ciphertexts on the cloud are encrypted with
the latest key a’. Note that re-keying, unlike re-encryption, is tran-
sitive, i.e., the re-keying can be applied multiple times to the same
item. The scheme would, however, be poorly suited for sharing, as
it requires both the source and target private keys.

Note that since both old and new keys are only known to Alice,
a curious cloud cannot learn anything about the private keys from
é. However, a malicious cloud could use the reverse of the key-
update token (i.e., a/a’) and downgrade ciphertexts encrypted under
newest keys to old keys. This is why we only enable re-keying in
case a semi-honest cloud or a trusted proxy is present.

5.4 Group Sharing Authorization

Data in Pilatus can be shared either directly with a user or a group.
We describe a simple sharing authorization mechanism for group-
related operations. The construction of the authorization is cru-
cial as it ensures that a joining group member (i) issues the re-
encryption token for the authentic group; and (ii) retrieves the
correct group key. These two aspects are related, since the cor-
rect group key is necessary for the process of generating the re-
encryption token.

Access Graphs. In our construction, we leverage access graphs,
which are similar to certification paths in the public key infrastruc-
ture, in combination with our re-encryption scheme. We form an
access graph for each group. The root node holds the initiator’s ID
concatenated with the group identity (e.g., “runners") and the public
key of the initiator, as depicted in Figure 9. The joining members of
the group compose the access graph nodes. Each node, except for
the root, is signed by the immediate parent node. The root is signed
by the IDP. The access graph allows group members to vouch for
the membership of other members.

Joining. Group membership is authorized by a group member in
two steps: (i) signing the extended identity (i.e., ID@group name)
and the public key of the new member, e.g., Alice, (after verifying
the key correctness over the IDP); and (ii) issuing a re-encryption
Tokeng—q which is then stored in the cloud. After joining the group,
Alice provides the re-encryption Token,—q, required for sharing
with the group. To issue this re-encryption token and later be able
to access (i.e., decrypt) group data, Alice needs the public (PKy) and
private (SKy) keys of the target group. This information is stored
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Setup time [ms]

Cryptosystem

80-bit sec.  128-bit sec.
Paillier 1623 42190
Standard 0.28 0.61
Sharing: Key setup 4.15 6.72
Sharing: Token gen. 25 4.7

Table 1: Average setup time on Nexus 5 for 80-bit and 128-bit
security levels.

signed and partly encrypted on the cloud:

(IDg,PKg, ENCg(SKg))signed—by—initiutor

Note that the initiator’s signature on the key information pre-
vents a malicious entity in deceiving Alice into issuing a token
for a fake group with the same name. Currently, group members
are authorized to add new members. We can restrict this authority
to the initiator only by encrypting the group’s private key with
the initiator’s key. A new member would require the initiator’s
authorization which is expressed in the Token;nitiaror—a to access
the group key.

Leaving. To leave a group, Alice initiates our revocation procedure
(c.f. §5.3). After revocation, new coming data is encrypted with new
keys and can no longer be transformed with the expired Tokeng— 4.
Her previous data, however, remains in the wild and can still be
accessed by the group members, unless Alice decides to trigger our
in-situ re-keying feature. Note that disclosure of the group’s secret
key SK4 and Alice’s Tokeng— 4 does not expose Alice’s private key.

5.5 Security Analysis

Our main security goals are to defy passive attacks targeted at data
on the cloud as well as to prevent access of unauthorized users (see
§2). Pilatus achieves these goals such that data on the cloud remains
strongly encrypted (i.e., semantic security) at all times. The cloud
never gains access to any decryption keys. We rely on the IDP to
prevent fake user creations.

To protect the data from unauthorized access, we cryptograph-
ically restrict data access to users with decryption keys (i.e., ei-
ther individual or group keys). With the re-encryption token, the
cloud can only re-encrypt the stored data towards the authorized
group/service. Moreover, we prevent a malicious cloud from per-
forming unauthorized re-encryptions towards a malicious user
(thanks to the one-hop property of the re-encryption scheme).

The disclosure of group keys does not affect the security of the
corresponding private keys of the group members. This is because
our underlying re-encryption scheme is key-private. After such an
incident, members can perform a revocation to terminate the data
transformation into group data.

Our in situ key-update technique assumes a semi-honest cloud.
In other cases, re-keying can either be disabled or delegated to a
trusted proxy.
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. Smartphone Constrained IoT Cloud
Mode Security
ENC [ms] DEC-1[ms] DEC-2 [ms] ENC [ms] ADD-1 [ps] ADD-2 [us] Share [ms]
Standard 80 24 2 - 252 54 - -
128 4.7 3.9 - 530 91.8 - -
Sharing 80 9.8 11.9 9 not available 62 30.6 1.7
128 15.2 17.4 13.3 not available 75 73.7 2.3

Table 2: Complete overview of our evaluation results for 32-bit integers (i.e., 2 CRTs) with 80-bit security. DEC-1/2 and ADD-1/2
refer to operations (1) before and (2) after sharing. Note that on smartphones, batch encryption/decryption with multithread-

ing (i.e., 4 threads) yields us a 3x performance improvement.

6 IMPLEMENTATION

We implemented a prototype of Pilatus for mobile platforms
(user/client devices) and the cloud (structured data storage). The
client engine (Android) consists of a REST client for interactions
with the cloud. Application developers can use the Pilatus API
which internally calls their previously defined SQL procedures. The
client engine handles data encryption before performing requests
and decryption after retrieving the data from an API call.

For the EC-ElGamal encryption, we utilize the ECC mod-
ule of the OpenSSL library (v1.1.0). We implemented the data
sharing components (i.e., re-encryption) based on the RELIC
toolkit [1, 2]. We support 80-bit and 128-bit security levels.
Our BSGS algorithm implementation relies on hash-map (i.e., klib
library) for the look-up table.

The cloud engine supports a MySQL database, for which we
implemented the corresponding User Defined Functions (UDF). We
use UDFs to replace the default routines with crypto-enabled ones,
without the need of recompiling the database. Incoming queries indi-
cate the UDF to be used, e.g., SELECT SUM_EC_ELGAMAL (column-x)
FROM table-y, where the standard SUM is replaced with the dedi-
cated homomorphic addition sum for EC-ElGamal. Moreover, the
cloud engine is equipped with a REST engine (i.e., Restlet library).

The implementation of Pilatus consists of 2000 sloc of C/C++,
10000 sloc of Java, and another 4000 sloc for testing, setup scripts,
and benchmarking. Our prototype Android applications Fitbit and
Ava consist of 2400 and 2500 sloc, respectively.

Example Applications. To show the feasibility of Pilatus and eval-
uate its end-to-end performance, we developed two example mobile
applications that integrate Pilatus, where the cloud components
are hosted on Amazon’s cloud services. Our Android activity track-
ing app operates on data collected by our personal Fitbit device.
It fetches the data from Fitbit servers and stores it encrypted in
our cloud instance. For our Ava fertility tracking app, we received
anonymized data from the Avawomen startup [5]. In both apps,
the users can interact with the data similar to the original apps.
Our applications do not cache any data locally which allows us to
study the worst-case performance while interacting with remote
data. The cloud and the client communicate over HTTPS and data
is encoded in JSON format, as a compact data representation form.
For authentication, we rely on the OpenID Connect [35], where we
currently support Google accounts [25] as a proof-of-concept.

Constrained IoT Devices. We implemented a prototype of Pilatus
for more constrained IoT devices, where the client-engine only
accommodates the encryption logic in the standard mode. We based
our implementation on Contiki [18], an open-source low-power
operating system for IoT devices. For cryptographic processing,
we utilize both software libraries (i.e., RELIC toolkit [1]) and the
hardware crypto accelerator.

7 EVALUATION

This section presents a thorough evaluation of Pilatus, both on the
cloud and on client sides (mobile device and, to a lesser extent,
constrained IoT device).

Evaluation Setup. Our evaluation setup consists of the client en-
gine running on a smartphone and the cloud engine running at
Amazon cloud services (AWS). We use an LG Nexus 5, equipped
with a 2.3 GHz quad-core 64-bit processor and 2 GB RAM, running
Android 5.1.1. Our AWS account provides 25 GB of storage and
one instance of Intel Xeon 3.3 GHz CPUs with 1 GB RAM. For
micro-benchmarks of homomorphic addition, we additionally use
a MacBook Pro equipped with 2.2 GHz Intel Core i7 and 8 GB of
RAM.

For the client engine, we also present results on constrained IoT
devices with our Contiki implementation. We select OpenMotes
as the hardware platform, which utilize the same class of MCU
as activity trackers such as Fitbit. OpenMotes are based on the
TI CC2538 microcontroller [60], i.e., 32-bit ARM Cortex-M3 at 32
MHz, with a public-key crypto accelerator running up to 250 MHz.
They are equipped with 802.15.4-compliant RF transceivers, 32 kB
of RAM and 512 kB of ROM.

Metrics. We rely on the following metrics to report on the over-
heads and performance of Pilatus:

o Computation time indicates the CPU time required to per-
form a certain operation. The computation time has a direct
impact on the application delay and energy consumption of
mobile platforms.

e Ciphertext size is an important metric considering network
bandwidth. It measures the impact of Pilatus on the commu-
nication requirements.

o System throughput is the rate of operations on encrypted
data performed in the cloud.
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(a) Ciphertext size (bandwidth/memory).

(b) Paillier vs. our optimized EC-ElGamal with 80-bit and (c) Batch decryptions of varying size with 80-bit security and 4x
128-bit security levels.

threads on Nexus 5.

Figure 10: On-device Standard Mode evaluation. Compares Paillier (utilized in CryptDB) with our optimized EC-ElGamal. With
the CRT technique, our standard mode can differentiate between different input lengths.

e Application latency reflects the time from a client initiating
a query to the client receiving and decrypting the results. It
accounts for query processing at the client side, plus network
latency and cloud processing time.

In the next sections, we continue with discussing the results
of the system components benchmark and then elaborate on the
end-to-end evaluation results. Table 2 summarizes the evaluation
results.

7.1 Micro-Benchmark

In this section, we discuss the performance of our crypto primitives.

Methodology. We instrument our client engine app to run the
operations in isolation. We generate plaintext inputs uniformly
at random for three input sizes: 16, 32, and 64-bit integers. We
repeat each experiment at least 1000 times, except for expensive key
generation operations which are repeated 100 times. For the time
measurements, we rely on the Google Guava Stopwatch class® with
nanoseconds accuracy. We only enable multi-threading support
of Android for batch decryptions. All other reported numbers are
measured while running on a single thread.

We first assess CRT in detail and then proceed to evaluating the
standard and data sharing modes on mobile devices.

7.1.1  CRT Optimization. With our CRT optimization (see §5.2),
we represent a larger value through its smaller remainders (i.e.,
congruences). We discuss here the tradeoff between decryption
performance and ciphertext size due to CRT.

Typical integer values are either 16, 32, or 64-bit. Note that for
selecting the size of congruences, the sum of congruence sizes must
be larger than the integer value to be represented. 16-bit values can
be calculated efficiently without CRT (Figure 6). For 32-bit values,
we can either select two 17-bit or three 11-bit congruences. For 64-
bit values, we can also use three 22-bit or four 17-bit congruences.

Table 3 shows the decryption time as a function of the number
of congruences, compared to the state-of-the-art Talos, which does
not use the CRT optimization. In the 32-bit case, we can improve
the 42 ms from Talos to 2 ms. In the 64-bit case, decryption is plain
infeasible in Talos, but becomes feasible to less than 10 ms with

5Guava: Google Core Lib for Java: https:/github.com/google/guava

CRT. The price to pay for more congruences is increased encryption
time (by few milliseconds) and ciphertext size (e.g., 126 bytes for
three congruences). Note that the performance gains of CRT plateau
and a higher number of congruencies do not yield further gains
(Table 3). Considering all these parameters, we select (for both
standard and sharing modes) two and three congruences for 32-
resp. 64-bit values, as a tradeoff between ciphertext expansion and
encryption/decryption times.

Memory. Pilatus requires two separate look-up tables (hash tables)
for standard mode and data sharing, as we use two different underly-
ing elliptic curves. The former accounts for 67 Mbyte and the latter
for 69 Mbyte, with 80-bit security. The tables are shared among
all applications served by Pilatus which amortizes the memory
requirements among them.

7.1.2 Standard Mode. In the standard mode, we utilize EC-
ElGamal to process data encrypted under a single key (no data
sharing). While the focus of our benchmark is on EC-ElGamal’s
performance, we also compare it to the more conventional Paillier
cryptosystem, used for instance in CryptDB [46].

Key Generation. Table 1 shows the average setup time on the
Nexus 5 device. EC-ElGamal requires less than 0.3 ms to generate
keying material with 80-bit security. This is significantly lower than
the 1623 ms required for Paillier, even though our key generation
additionally includes finding the corresponding primes for the con-
gruences in the CRT. Anyhow, key generation does not frequently
occur, compared to encryption and decryption, detailed next.

Ciphertext Size. Figure 10(a) shows the ciphertext sizes for dif-
ferent integer sizes and security levels. In the standard mode, we
support 16, 32 and 64-bit integers. Each integer size requires a dif-
ferent number of congruences, leading to a ciphertext size between
42 and 126 bytes in the 80-bit security case. In contrast, Paillier
requires 256 bytes, regardless of the integer size. The difference is
even more pronounced as the security level increases, negatively
impacting network bandwidth and cloud storage.

Encryption/Decryption. Figure 10(b) shows the encryption
and decryption time with EC-ElGamal vs. Pailler, for dif-
ferent integer sizes, with both 80-bit and 128-bit security.
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Encryption time [ms]

Decryption time [ms]

Ciphertext size [bytes]

Pilatus, #congruences

Pilatus, #congruences Pilatus, #congruences

Integer size [bits] Talos Talos Talos
2 3 4 5 2 3 4 5 2 3 4 5
32 1.1 24 33 44 54 427 2.0 29 40 50
64 1.2 25 3.5 47 5.7 infeasible 139 6.4 42 5.0 42 84 126 164 210

Table 3: CRT optimization. Performance of Pilatus (EC-ElGamal with CRT) on Nexus 5 with 80-bit security, compared to Talos
(i.e., no CRT). “The reported 190 ms in Talos [53] is reduced here to 42 ms with multithreading.

Paillier has constant computation times due to its large padding,
while EC-ElGamal sees its performance increase for smaller plain-
text. EC-ElGamal outperforms Paillier for encryption with a factor
of 3 and more. For decryption, EC-ElGamal is the fastest in all
settings but the case of 80-bit security and 64-bit integers. Pail-
lier’s sharp decrease in performance with 128-bit security is due
to larger key sizes (from 1024 to 3072-bit) and the resulting big
number operations.

Figure 10(c) shows the batch decryption time at the mobile device.
Even for 64-bit integers, hundreds of items can be decrypted in
some hundred milliseconds. This is an important factor for the
responsiveness of smartphone applications.

Note that the good performance of EC-ElGamal lies to a large
part in our CRT optimization, as discussed in §7.1.1. Moreover, the
benefits of an efficient encryption are particularly important in an
IoT context, since IoT applications tend to encrypt more data items
than they decrypt (all measurements are stored in the cloud, only a
subset or aggregates are downloaded for display).

Homomorphic Addition. We measure the homomorphic addi-
tion in isolation on a MacBook Pro, thus exclude the bootstrapping
overhead of the database’s UDF. The homomorphic addition in the
standard mode requires between 27 and 82 us for 16 and 64-bit in-
tegers, respectively (see Table 2). This is higher than Paillier (8 ps),
which is mainly due to the underlying structure of EC-ElGamal
where the ciphertext consists of two EC points. Note that paral-
lelizing the homomorphic addition on the cloud would potentially
result in considerable performance gain. In §7.2, we discuss the
impact of this overhead on sum queries.

7.1.3  Data Sharing Mode. We evaluate the data sharing mode,
where the client encrypts data and issues a token such that the cloud
can re-encrypt a ciphertext to the target user or group. The key
setup is with 4 ms similarly efficient to EC-ElGamal (see Table 1).

Ciphertext Size. Note that we use the same number of congru-
ences as in standard mode. Since our re-encryption scheme is based
on bilinear maps, we have to select the parameters such that we
achieve at least 80-bit (i.e., subgroup size 160 and extension field
size 1024) or 128-bit security. This results in larger ciphertext sizes
compared to standard mode (i.e., between 186 and 558 bytes as
depicted in Figure 11(a)). This is four times larger than in stan-
dard mode, but still comparable with Paillier. After sharing (i.e.,
re-encryption) the ciphertext sizes expand by a factor of 1.7 due to
pairing.

Encryption/Decryption. Figure 11(b) shows the performance of
encryption and decryption in the sharing mode, for different inte-
ger sizes and security levels. Overall, the sharing mode is slower
than standard mode by a factor of 2.2 to 3.3, but remains within
acceptable bounds, that is, below 30 ms.

Note that this overhead is, to some extent, offset by the perfor-
mance gains of offloading the re-encryption operation to the cloud.
To enable sharing, the client only needs to generate a token (takes
2.5 ms) and then encrypt the data in sharing mode. As depicted in
Figure 11(c), a client can issue a few hundred re-encryption tokens
within 500 ms. Issuing a large number of re-encryption tokens be-
comes relevant after access revocation, as discussed in §5.4. The
performance of re-encryption at the cloud is evaluated in §7.2.

Homomorphic Addition. The homomorphic addition with the
data sharing mode is more efficient than the standard mode. Note
that with data sharing, we have two types of additions: prior share
and post share, which amount to 31 and 15 us per CRT, respectively
(see Table 2).

7.1.4  Constrained loT Devices. We now turn our attention to
constrained IoT devices and evaluate encryption performance with
the OpenMote’s hardware accelerator. For the time and energy
measurements, we rely on a dedicated hardware timer with an
accuracy of 1 us and a mixed signal oscilloscope, respectively. Pail-
lier in 80-bit security requires 1.8 s to encrypt a 16-bit value. The
same encryption with EC-ElGamal is significantly more efficient
with 126 ms (corresponds to 6.85 mJ). Table 2 compares the results
of constrained devices to smartphones. Although the encryption
time on constrained devices is more than one order of magnitude
higher than encryption on the more powerful IoT gateways, it is
still feasible with only 10% of the daily energy budget of a typical
Fitbit (400 mAh lithium-polymer battery) to encrypt at a rate of 0.24
Hz. To put this number into context, assuming heart rate tracking
at 1 Hz during sport and six times per hour otherwise®, we can
encrypt the heart-rate of a person with 6 hours of sports activity
per day.

7.2 System Benchmark

This section evaluates Pilatus as a full system: processing through-
put, end-to-end latency, and our two case study applications: Fitbit
and Ava.

®Microsoft Band: http://www.windowscentral.com/
how-often-microsoft-band- checks-your-heart-rate
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Figure 11: On-device Data Sharing evaluation. The Client engine performs encryptions and decryptions of data. After revoca-
tion, new re-encryption tokens are issued for valid sharing relationships. Note batch encryption/decryption with multithread-
ing (e.g., 4 threads) yields a factor of 3 performance improvement, e.g., decryption of 64-bit integers is reduced to 5.5 and 10 ms,

for 80-bit and 128-bit security, respectively.

Methodology. We utilize our client and cloud engines for the sys-
tem benchmark. The client engine has an average ping time to
the Amazon cloud of 22 ms, or it can be co-located at the cloud,
neglecting network latency in favor of more isolated throughput
measurements. Similar to micro-benchmarks, we rely on the Stop-
watch class for the time measurements, instrumented at the client
engine. To compute the system’s throughput at the cloud engine,
we initiate SQL sum queries over a varying number of values from
our client module. For the end-to-end evaluation, the ciphertexts
are additionally decrypted and provided to the corresponding ap-
plication.

Encrypted Query Processing. Figure 12(a) and Figure 12(b) de-
pict the performance of the cloud engine on AWS when performing
sum SQL queries, over either plaintext or encrypted data. We create
queries with variable lengths (i.e., summands) and measure the time
to process each, and compute the average system throughput of
the cloud engine for a single connection. In Figure 12(a), we initiate
the requests locally from the cloud (no network latency) and in
Figure 12(b) from the client engine over the Internet.

Without consideration of network communication, plaintext
sum operations are about two orders of magnitude faster than the
homomorphically encrypted sums. With network communication,
the relative performance loss is lower, in particular when only a few
items are added and network delay is the bottleneck. However, the
larger the number of items, the more the overhead of homomorphic
additions impacts the performance, e.g., with 1000 values to be
added, the performance loss reaches a factor 2.7. Note that such
queries are highly parallelizable, allowing for better performance;
plaintext operations already benefit from parallelization. Our cur-
rent evaluation results show the lower bound performance and in
future work, we plan to parallelize our routines at the database.

For data sharing, the computations take place offline in the cloud,
without user interaction. The throughput of re-encryptions per
data item amounts to 1136 re-encryptions per second, with a single
thread (see Figure 12(a)). Note that re-encryption is the most expen-
sive operation as it involves expensive pairing. The re-encryptions
should also be parallelized in the cloud to reach the best perfor-
mance.

App (mode) Upload (encrypt)  View (decrypt)
[s] [#items] [ms] [# items]

Fitbit (Standard) 1.3 1500 30 50

Ava (Sharing) 31 9000 127 50

Table 4: Fitbit and Ava enhanced with Pilatus. Encryption
overhead when uploading one day worth of data and decryp-
tion overhead at visualization for the most costly view. Se-
curity is set to 80-bit, all data items are 32-bit values, and
multithreading enabled.

End-to-end Latency. Figure 12(c) depicts the end-to-end latency
for varying sum queries. The latency values follow a similar trend
as the throughput values, as depicted in Figure 12(b). For lower
range sum queries, the average performance of data sharing and
standard mode are close to queries over plaintext. For larger ranges,
the average latency increases by a factor of 2 and 2.7, respectively.
To guarantee a smooth user interaction with encrypted data, the
latency should be below 1 s, which is the case even for larger ranges
(i.e., below 50 ms for 1000 items).

Applications. Our two Android applicationsrun Pilatus on real-
world collected data and allow the user to upload encrypted data
and interact with them similarly to the original apps (see Table 4).
Our FitBit app adds an overhead of 1.3 s for uploading data of
one day — an operation that takes place in the background. While
rendering different views of the app (e.g., daily, weekly, detailed
graphs), we measure a maximum overhead of 32 ms due to decryp-
tions. Note that we use no local caching to emulate worst case
scenarios. Our Ava fertility tracking app collects data from a more
diverse set of sensors at a higher granularity during sleep and hence
produces more data points. Additionally, we discuss the numbers in
the context of the more expensive data sharing mode. Our Ava app
induces an overhead of 31 s for uploading one day worth of data.
For rendering different views after sharing, the maximum overhead
is 127 ms. For both apps, the overhead due to decryption is well
below the 1 s requirement. Hence, the user experience with Pilatus
remains unaltered.

(c) Batch token generation (for re-encryption) with 80-bit security
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(a) Operations in the cloud, initiated locally at the cloud. (b) Operations in the cloud, initiated by the client over the

(c) End-to-end latency including decryption.

network (22 ms ping).

Figure 12: Cloud evaluation of Standard Mode and Data Sharing, with our cloud engine running on Amazon, with 80-bit
security. Pre- and post-sharing sum refer to sum queries before and after sharing.

Conclusion. Our evaluation shows the practicability of Pilatus,
especially for mobile platforms which play a vital role in the IoT
ecosystem (i.e., as the gateways). The end-to-end latency results
show that Pilatus succeeds in preserving the user experience while
interacting with encrypted data. Pilatus induces a moderate over-
head for an increased level of data privacy and security.

8 RELATED WORK

In the following, we discuss important research directions in rela-
tion to Pilatus.

Encrypted Search. Recent advancements of fully homomorphic
encryption [22] have resulted into implementable schemes [14,
23, 50], which are however presently too slow for real world ap-
plications. Searchable encryption schemes support only a limited
set of operations, but can be efficiently used in specialized do-
mains. Song et al. [58] introduced the first encrypted search scheme
for text files, where the metadata is encrypted deterministically
and hence searchable. Their idea is based on deterministically
encrypting the meta information of files, and hence being able
to search over them. Follow-up schemes address other problems
such as encrypted data de-duplication [33], deep packet inspec-
tion [54], and private network function virtualization [3]. More
capable search schemes [12, 46, 49, 50, 53, 55], targeted for struc-
tured databases, employ additional techniques such as partially
homomorphic and order-preserving encryptions. Among these,
CryptDB has early adopters in industry [24, 38]. Monomi [62] im-
proves the performance of CryptDB and extends supported queries.
In CryptDB, the application server has access to keys and carries out
en-/decryptions. Hence, it can leak information if compromised. Ta-
los [51, 53] tailors CryptDB for IoT devices and eliminates the need
to trust the application server. Mylar [47] introduces encrypted
text file search with multiple keys. Shi et al. [56] propose private
aggregation for time series data, which blends secret sharing with
homomorphic encryption. Access patterns to encrypted data still
leak sensitive information about the plaintext data. This shortcom-
ing can be addressed with Oblivious RAM approaches [48, 59]. Pila-
tus is the first practical system to support processing of multi-key
encrypted data and is tailored for constrained devices. This opens
practical encrypted data processing to a new space of applications
that existing systems do not support.

MPC. In traditional Secure Multi-Party Computation (MPC) [66],
private functions are computed among a set of users without a
trusted party. Hereby individual values from participating users are
kept confidential, while the outcome can be public. This requires
high interaction between users, which would drain the limited
resources of mobile platforms. With the rise of cloud computing,
server-aided/outsourced MPC approaches have emerged. However,
these schemes are either only of theoretical interest [36] or require
at least two non-colluding servers, where for instance one server
has only access to encrypted data and the other server has access
to the keys [42, 45].

Trusted Computing. An orthogonal approach to encrypted com-
puting assumes a trusted computing module on an untrusted cloud
environment [6, 9, 37]. The data remains encrypted at rest and is
decrypted in the trusted module for computations. This approach
is appealing to data center operators, due to control over hard-
ware. However, it implies that users consider the trusted computing
module trustworthy. Autocrypt [61] combines PHE and trusted
computing to enable encrypted computing on sensitive Web data
on virtual machines.

Re-Encryption. The idea of Re-Encryption (RE) has been initially
proposed for email forwarding. The initial schemes [10, 30] have
the bi-directional property and are not resistant against collusion.
Moreover, the parties need to exchange their private keys. The later
schemes [4, 26] address these weaknesses and are uni-directional
and non-interactive. Pilatus utilizes the RE scheme by Ateniese et
al. [4] to allow transformation of encrypted data for data sharing.
More importantly, we extend this scheme with the CRT technique,
to render it efficient. The symmetric-key RE based on the key-
homomorphic PRF scheme [13] lacks our required homomorphic
property and master-secret secrecy. Sieve [65] utilizes this key-
homomorphic scheme to provide cryptographically enforced access
control for cloud data. Sieve’s key revocation assumes that the cloud
does not yield access to compromised shared keys. Otherwise, the
new key will be automatically compromised as the cloud can use
the old key to compute the new key from the re-keying delta. In
Pilatus, even with access to the revoked key of Bob and re-keying
delta, the cloud cannot learn the new key of Alice.
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9 CONCLUSION

We presented Pilatus, a new practical system tailored for the IoT
ecosystem. We empower the user with full control over their data,
despite it being stored in third-party clouds. In Pilatus, the cloud
does not have access to any secret keys and stores only encrypted
data. It can though process queries on encrypted data and re-encrypt
it for sharing. Our sharing scheme comes with cryptographic guar-
antees and the possibility of revocation. We have optimized the
underlying cryptographic operations towards mobile platforms.
Our implementation and case studies on Fitbit and Ava show that
Pilatus has reasonable overhead in processing time and end-to-end
latency. We anticipate the presented cryptosystem and open-source
platform to be helpful for the design of secure mobile applications
and to enable further research in this field.
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