
Towards Blockchain-based Auditable Storage
and Sharing of IoT Data

Hossein Shafagh

Department of Computer Science

ETH Zurich, Switzerland

shafagh@inf.ethz.ch

Lukas Burkhalter

Department of Computer Science

ETH Zurich, Switzerland

burkhalter@inf.ethz.ch

Anwar Hithnawi

Department of Computer Science

ETH Zurich, Switzerland

hithnawi@inf.ethz.ch

Simon Duquennoy

RISE SICS, Sweden

simon.duquennoy@ri.se

ABSTRACT
Today the cloud plays a central role in storing, processing, and

distributing data. Despite contributing to the rapid development of

IoT applications, the current IoT cloud-centric architecture has led

into a myriad of isolated data silos that hinders the full potential

of holistic data-driven analytics within the IoT. In this paper, we

present a blockchain-based design for the IoT that brings a dis-

tributed access control and data management. We depart from the

current trust model that delegates access control of our data to a

centralized trusted authority and instead empower the users with

data ownership. Our design is tailored for IoT data streams and

enables secure data sharing. We enable a secure and resilient access

control management, by utilizing the blockchain as an auditable

and distributed access control layer to the storage layer. We facili-

tate the storage of time-series IoT data at the edge of the network

via a locality-aware decentralized storage system that is managed

with the blockchain technology. Our system is agnostic of the phys-

ical storage nodes and supports as well utilization of cloud storage

resources as storage nodes.

1 INTRODUCTION
With the emergence of networked embedded devices dubbed as

the IoT, we are witnessing an ever increasing number of innovative

applications. The current ecosystem of the IoT consists typically

of designated low-power devices equipped with sensors collect-

ing data. This data is then stored via special-purpose apps (i.e.,

application-layer gateways) in a third-party cloud storage for fur-

ther processing.

This stove-piped architecture [31] has resulted into isolated data

silos, where users have limited control over their data and how

it is used. Users have to trust the cloud and application providers

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCSW’17, November 3, 2017, Dallas, TX, USA
© 2017 Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-5204-8/17/11. . . $15.00

https://doi.org/10.1145/3140649.3140656

Data plane
(DHT, Cloud)

Control plane
(Blockchain)

IoT devices &
Services

Figure 1: Our blockchain-based, end-to-end encrypted, and
decentralized data storage. No central trusted authority con-
trols access to users’ data.

and have no choice but to rely on their promises of security and

availability.

Today’s IoT security efforts mostly focus on securing point-to-

point communication and fall short in addressing security during

the life-cycle of data (e.g., auditable access control, secure sharing).

The current cloud-based model in the IoT handles identification, au-

thentication, and connectivity of IoT devices. Although this model

has enabled the bootstrap of the IoT ecosystem, it is not necessarily

the most suitable solution for the IoT [32], as it neglects the locality

of data and mandates centralization through trusted third parties.

These limitations necessitate a rethinking of the way we cur-

rently handle IoT data. Instead of giving up ownership of our data

to various applications, we enable an independent and resilient data

management system that ensures data ownership. We identify the

following requirements for such a system: (R1) Decentralized, re-
silient, and auditable access control management (ownership, cryp-

tographically secure sharing); (R2) Secure data storage (confiden-
tiality, authenticity, integrity); (R3) IoT compatibility (append-only

data streams, with a single writer and several readers). Conven-

tional cloud-based solutions provide R2 and when relevant R3, but
fall short in addressing R1. Recent decentralized storage startup

efforts (Sia [25], Storj [29], Filecoin [27]) show the potential of

decentralized blockchain-based storage with financial incentives.

https://doi.org/10.1145/3140649.3140656

These efforts, however, are optimized for file storage and fall short

in accommodating for time-series data of the IoT (i.e., R3).
We propose a blockchain-based access control management to

address R1. This provides us with an independent network that

maintains a distributed ledger of access control permissions. In-

spired by recent blockchain-based technologies [2, 33], we combine

the blockchain with an off-chain storage, for a scalable secure data

storage to address R2. Finally, our system is designed from the

ground up to support IoT data streams to address R3. Our system
accommodates for IoT data streams where streams are chunked,

compressed, and encrypted in the application layer and only au-

thorized services are granted access to the decryption keys. This

requires us to address several challenges for an efficient key dis-

tribution and management scheme as well as a secure storage of

data stream chunks. The built-in cryptocurrency feature in the

underlying blockchain technology would allow the realization of

an autonomous, self-sustaining decentralized storage ecosystem,

where storage nodes are rewarded for providing storage and band-

width, and more importantly for following the protocol correctly.

The contribution of this paper is the design of a novel blockchain-

based auditable data-management system for IoT data. Our system

exhibits (i) a cryptographically secure data sharing with frequent

key updates, (ii) the possibility of access revocation, (iii) an efficient

search of compressed chunked data streams, and (iv) a distributed
locality-aware storage layer.

2 BACKGROUND
In this section, we briefly review important aspects of the cloud,

the IoT ecosystem, and give a primer on the blockchain technology.

2.1 Cloud
Cloud platforms are typically hosted in large-scale data centers

that are located at the edge of the Internet backbone [32]. The

consolidation and centralization of data centers, however, yield

an increased distance between clients and services. This results

in a high variability in latency and bandwidth. To address this is-

sue, especially with regards to resource-intensive and interactive

applications, decentralized cloud architectures, namely cloudlets,

have emerged. Cloudlets are small-scale data centers that are lo-

cated closer to users and can meet low latency and high bandwidth

guarantees. Our system embraces this locality-aware data storage

and processing trend and brings it to its full potential with our

decentralized access control layer which ensures ownership and

secure sharing of data.

2.2 IoT Ecosystem
Embedded computing devices are increasingly integrated into ob-

jects and environments surrounding us. These devices utilize low-

cost sensors for a range of applications. The typical system structure

of the IoT involves the three tiers of (i) low-power IoT devices, (ii) a

potential gateway that interconnects IoT devices with the Internet,

and (iii) the backend where IoT data is stored.

IoT devices are typically equipped with resources in the orders

of few MHz of CPU, few 10s of KB of RAM, and few 100s of KB of

ROM. Additionally, they can embed low-power hardware crypto

accelerators, enabling a new class of secure applications [23, 24],

for instance, lightweight clients of a blockchain network. How-

ever, conventional security solutions for the IoT still utilize pre-

shared symmetric keys for the secure communication. This simple

approach does not scale for the massive number of IoT devices.

Efforts [14] to tailor public-key based secure communication to the

IoT remain to find widespread adoption. Leveraging the blockchain

technology, we enable a decentralized management of identities of

IoT devices and enable a transparent device ownership.

2.3 Blockchain
A blockchain is essentially a distributed ledger that consists of

a continuously growing set of records. The distributed nature of

blockchains implies no single entity controls the ledger (i.e., cen-

sorship/suppression resistant), but rather the participating peers

together validate the authenticity of records. These records are

organized in blocks which are linked together using cryptographic

hashes, hence the name blockchain. Blockchain-based technolo-

gies [19] incentivize a network of peers to make computations

towards consensus in the network.

The most prominent example of a successful blockchain deploy-

ment is the Bitcoin cryptocurrency (the decentralized peer-to-peer

digital currency) [6, 18]. The Bitcoin blockchain maintains all trans-

actions from the initial block, referred to as the genesis block. A

transaction contains the sender, receiver, amount of the transferred

Bitcoin currency, and signature of the sender. For a transaction to

be included in the blockchain (i.e., to be considered as valid), it is

transmitted to the blockchain network. The so-called miners take

the responsibility to verify new transactions and suggest the next

block which includes the verified transactions. Miners are rewarded

with Bitcoins and transaction fees for their computational work.

To prevent a single miner from dominating the blockchain net-

work and hence having the power of manipulating the history

of transactions, the concept of proof-of-work [18] is employed to

reach consensus in the blockchain network. A new block includes a

set of new transactions, the hash of the previous block, the miner’s

address who is suggesting this block, and most importantly the an-

swer to a difficult-to-solve mathematical puzzle. This mathematical

puzzle is unique to each block and easy to verify once found. Once

a miner finds such a block, it publishes it such that all nodes and

miners can verify its correctness and consider it as the new valid

block to build upon. In case several valid blocks are suggested at

the same time, miners randomly select the next block. Eventually,

the network converges towards the longest branch of the block-

chain as the main branch. Solving the puzzle is referred to as the

proof-of-work and ensures as well resistance against Sybil attacks.

Bitcoin and its most prominent contender Ethereum [1] are

permission-less blockchains where any node can become a miner or

just a client. Permissioned blockchains, such as the hyperledger [7],

allow a designated set of authorized validator nodes (i.e., miners)

to participate in the block validation process. Such blockchains

typically use more CPU-friendly consensus protocols, such as the

Practical Byzantine Fault Tolerance protocol [8], since the set

of validator nodes is known. Hence, permissioned blockchains

can handle a higher transaction throughput (7 vs. 10
4
transac-

tions per second). However, permissioned blockchains require a

trusted central party to initially authorize the blockchain validators.

Networks are composed of three basic components

Routing

Storage

Virtualchain

Blockchain

G
en

es
is

 B
lo

ck

So people pick “know
n good candidates”

84

C
on

tro
l P

la
ne

D
at

a
Pl

an
e

Figure 2: Overviewof our layered design. Transactions in the
blockchain can contain access permissions (gray).

Moreover, due to the high communication overhead, i.e., O (n2),
only deployments of a few tens of validators are practical.

3 SYSTEM DESIGN
In a nutshell, we decouple the control and data plane of our IoT

distributed storage system (see Fig. 2). We realize the access con-

trol layer using a public blockchain, to satisfy R1. Bitcoin is our

current candidate for the blockchain layer in our reference im-

plementation due to its strong security, reliability, and current

dominance. However, other cryptocurrencies [22] can be employed

seamlessly. This is possible, because our system’s logic resides in a

virtualchain [2, 21] and outside the blockchain. Virtualchain allows

the introduction of new functionality to production blockchains,

without requiring any changes in the underlying blockchain.

The data plane consists of a routing layer and the secure stor-

age layer to satisfy R2. The storage layer is composed of either an

on-premises storage, the cloud, or a distributed peer-to-peer net-

work. Data is encrypted end-to-end at the client-side. Hence, the

storage nodes have no insights about the hosted data at their side.

The data in our system is structured in streams, to accommodate

for IoT-specific needs (statisfies R3). In concrete terms, ownership

and sharing permissions are per stream, and streams are chunked

and encrypted before storage.

In the following, we detail our design for the control plane and

our data plane features.

3.1 Control Plane
In our system, the control plane is logically separated and agnostic

of the data plane.

Blockchain. We employ a publicly verifiable blockchain to cre-

ate an accountable distributed system and bootstrap trust in an

untrusted network, without a central trust entity. In our system,

transactions consist of ownership of data streams and correspond-

ing access permissions. Our access control transactions, similar

to default transactions of the underlying cryptocurrency, remain

publicly auditable (see Fig. 2). To preserve the privacy of access

permissions, we can rely on stealth addresses [9].

Access Control. Weuse the blockchain to store access permissions

securely. Access rights are granted per data stream and the data

owner can revoke the sharing of a data stream. Initially, the data

owner issues a transaction including the stream identifier (i.e., hash

digest). To share the data stream with a service, the data owner

issues a new transaction which holds (i) the stream identifier and

(ii) the public key address of the service.

For any request to retrieve data, the storage node first checks

the blockchain for access rights. Note that a malicious storage node

could hand out data without permission. However, the impact of

this action is limited since (i) data is encrypted, (ii) in the case of

DHT, each node holds a small random fraction of a data stream.

Moreover, economic incentives (i.e., collateral and reward) should

encourage storage nodes to follow the protocol correctly.

Key Management. We enable a low-cost key renewal with key

regression [12]. In key regression, given key Kt in current time

t one can compute all keys until the initial key K0. This allows

us to update the encryption keys frequently, and only share the

latest Kt with the sharing services. However, given n services, this

requires a communication overhead in the order of O (n): at each
key update, the key must be shared n times (after encrypting it with

the corresponding service’s public key).

We propose to employ a re-encryption-based technique to bring

the communication overhead to O (1). Given a re-encryption token

Ta→b , one can re-encrypt a ciphertext under Alice’s public key PKa
to a ciphertext under Bob’s public key PKb , without access to the

plaintext [3, 5]. To share Kt with all services, Alice encrypts Kt
with a one-time public key pair (PKa , SKa). For all services Si , she
issues a re-encryption tokenTSKa→PKSi based on their public keys

PKSi (this step takes place while issuing the sharing transaction).

Each service Si can then re-encrypt ENCPKa (Kt) to ENCPKSi (Kt),

and use their respective secret keys (SKSi) to access Kt . After this
point, Alice only needs to update ENCPKa (Kt+1) for the services
to preserve their access to the latest key Kt+1.
Revocation. To revoke access to a data stream, the data owner

updates the encryption key toKt+1. She then updates the encrypted
shared key for authorized readers, however, with a new one-time

public key pair: ENCPKa′ (Kt+1). Revocation causes a communi-

cation overhead of O (n), since Alice needs to update all valid re-

encryption tokensTSKa′→PKSi , excluding the revoked service. This

prevents the revoked user to decrypt any future data.

As an additional protection, and for auditing purposes, the user

issues a new blockchain transaction overriding previous permis-

sions. Storage nodes will even decline sharing older data, that the

user once had access to. The impact of a potential dishonest node

leaking old encrypted data chunks is low, as old data might have

been cached at the user anyway. New data, however, is protected

cryptographically after a key update.

3.2 Data Plane
In order to address R3, we consider IoT data types of stream char-

acter where data records are generated continuously, as depicted

in Fig. 3. Current distributed storage approaches [15, 27, 29] pri-

marily target archiving data and are not suitable for IoT data.

Val
1

Val
2

Val
3

Val
4

Val
5

Val
6

Val
7

Val
8

Val
9

Val
10

Chunk #0 Chunk #1 Chunk #2

…

Stored in the
storage layer

time t0 t1 t1

Hash
link

Hash
link

Figure 3: Data streams are chunked at pre-defined lengths,
compressed, and encrypted. To lookup a record, a local index
maps the key of the record to the chunk key.

Moreover, they either consider data to be public (e.g., IPFS[15]) or

store encrypted datawithout a secure sharing feature (e.g., Storj [29]

and Filecoin [27]).

To store time-series data in our system, we store data chunks

which compose several consecutive data records, instead of storing

individual data records. To this end, we split a data stream into

data chunks which are cryptographically chained together (i.e.,

each chunk holds a hash pointer to the previous chunk). Although

chunking data prevents random access at the record level, there is

a positive gain on the performance of data retrieval since in time-

series data most queries require data that is co-located in time (e.g.,

all records of one day) [13].

Note that the data itself is stored off-chain and only its iden-

tifier (i.e., hash pointer) is included in the blockchain, ensuring

data immutability. Since adding an identifier for each chunk to the

blockchain would not scale, our system adds only data chunks at

given intervals into the blockchain. Due to the fact that all chunks

are cryptographically chained together, all chunks that are between

two intervals without their identifier in the blockchain become

immutable too. The interval-time corresponds to the maximum

time chunks need to become immutable. It is tunable and defined

by the application logic.

Encryption. Each data chunk is encrypted at the source with an ef-
ficient symmetric cipher. We rely on AES-GCM, as an authenticated

encryption scheme. Our chunks have a plaintext field containing

the key value of the chunk and the encrypted compressed data

records. With authenticated encryption, both fields are integrity

protected and authenticated. Services with access to the symmet-

ric data stream key Kt can verify the integrity of the chunk and

perform an authenticated decryption.

To ensure data ownership, for instance towards the storage layer,

each chunk is in addition signed. This allows parties without access

to the stream key to still be able to verify the owner of the data

stream, albeit at a higher computation cost. Each chunk contains

the unencrypted stream identifier linking it to the corresponding

access control transactions.

Compression. IoT data is highly compressible due to high corre-

lation in time. Hence, we compress data chunks before encryption.

This reduces bandwidth and storage requirements significantly.

Our initial results of IoT data compression show that even with

small chunk sizes, we can reach compression ratios close to the

optimum (i.e., compression of the entire data set). As depicted in

100 101 102 103 104 105

Number of chunk entries

0
2
4
6
8

10
12

C
om

pr
es

si
on

 ra
tio

Ava 3lain
Ava EnFrySted

FitBit 3lain
FitBit EnFrySted

Figure 4: Compression ratio of our chunking with the
authors Fitbit data and anonymized Ava data of one year.

Hence, the IoT gateway serves as a cache of recent data
items for on the gateway hosted apps and could as well
be queried by services in network proximity to the IoT
gateway. Current IoT apps, first push all new data to the
cloud and then fetch them again for visualization (e.g.,
FitBit), introducing an unnecessary latency.

For the distributed storage, we rely on a P2P overlay
routing technique and a Distributed Hash Table (DHT)
as our general-purpose private key-value data store inter-
face. The DHT serves as a scalable, self-managing stor-
age with high availability (i.e., robust against targeted
communication outages or malicious attacks in case of
central servers). The DHT in general enforces repli-
cated and randomized storage across a 256-bit address
space. However, we rely on the sloppy hashing tech-
nique [12,13] to augment our instantiation of DHT [5,20]
with locality. To this end, chunks are stored/replicated on
nodes that are closer to the services or the data owner.

How to financially incentivize participation in a dis-
tributed storage is out of the scope of this paper. Sev-
eral researchers and a few start-ups propose systems
where users can make money with “renting out” their
local storage space [28–30]. For instance, proof-of-
retrievability [30] can be used as a mechanism to reward
users who store more files for a longer time.

3.3 Privacy & Security Analysis.

For an adversary to alter access permissions in the block-
chain it requires forging a digital-signature or gaining
control over the majority of the compute power in the
blockchain network. The former is prevented with the
security of signatures and the latter with the consensus
protocol in the blockchain (i.e., proof-of-work) and its
decentralized nature. Moreover, an adversary is not ca-
pable of learning sensitive information from the pub-
lic blockchain, since only pseudo-identities and stream
identifiers are stored there. Data chunks are encrypted,
integrity protected, and authenticated. An adversary with
access to encryption key cannot alter stored chunks, as it
requires gaining access to the public-private key pair of
the data owner.

4 Related Work

In this section, we briefly review a subset of relevant
work to our system.
Data Privacy & Access Control. The current dom-
inating approach for sharing data in the web services
is based on the OAuth protocol [19] where a central
trusted entity enforces user-defined access policies (does
not fullfil R1). Sieve [31] addresses these shortcomings
with a combination of key-homomorphic and attribute-
based encryption schemes. Many applications employ
anonymized data collection [27] as an attempt to pro-
tect personally identifiable information. However, re-
searchers have demonstrated effective de-anonymization
techniques [23] which work even with a small set of high
dimensionality data.
Blockchain. In recent years, a new class of blockchain
technologies have emerged that utilize the accountable
computing and auditability of blockchains for other do-
mains. Blockstack [1] introduces the concept of virtu-
alchains and proposes a decentralized server-less DNS.
Blockstack extends to a decentralized public key distri-
bution system and registry for user identities. Storj [30]
and FileCoin [28] introduce a distributed object storage.
They are both targeted for archiving files and lack shar-
ing features. Enigma [34, 35] is the closest to our ap-
proach in that it uses the blockchain for access control
and enables sharing of off-chain stored data. However,
Enigma stores data access logs within the blockchain,
without addressing the consequential scalability issues.
Moreover, their system does not accommodate for IoT
stream data (not satisfing R3). Our approach is inspired
by the above approaches, however, our focus on IoT data
leads to a number of important design differences.
IoT Storage. A few of our design decisions regarding
IoT data streams are inspired by Bolt [16]. Bolt presents
chunking of IoT data for performance gain and protects
confidentiality of chunks. However, Bolt relies on the
cloud-centric model (does not address R1). “The Cloud
is Not Enough” [33] discusses the pitfalls of the cloud-
centric IoT and advocates a data-centric approach. They
leave concrete system proposals for future work.

5 Conclusion

In this paper, we introduce the primary design of a dis-
tributed secure data storage system targeted for the Inter-
net of Things. Our system allows for fine-grained access
control and sharing of sensor data of various IoT appli-
cations. Realizing such a system requires addressing re-
search challenges at several fronts. We are currently in
the process of finalizing our design and implementing a
complete prototype of our system and building several
IoT applications on top of it.

5

Figure 4: Compression ratio of our chunking with the au-
thors Fitbit data and anonymized Ava data of one year.

Fig. 4, compressing the data record of one year by Fitbit
1
results into

a compression ratio of 9.75 (11.45 for Ava
2
). Already with a chunk

size of 2048 (corresponding to one day worth of data records for

Ava), we can reach a ratio of 11.08 for encrypted and compressed

chunks.

Search. In the storage layer, we store key-value pairs. In our case,

the value is the current data chunk of a data stream, where the

key (i.e., a 256-bit identifier) is the cryptographic hash of the tuple:

<stream-ID, owner-ID, timestamp-hash>. The IDs are unique bit

strings (i.e., hash digests).

To enable an efficient search and query of any record in the data

stream, we use a simple technique based on the the timestamp t0 of
the first chunk and the length of the chunks ∆. To look-up a record

with timestamp ti , we compute the timestamp of the chunk holding

it. For instance, the look-up of value 6 in Fig. 3 is mapped to the

key of chunk #1.

Data Storage. We advocate a distributed data storage layer, how-

ever our design is agnostic of the storage layer. Hence, on-premise

storage and storage on cloud services are compatible with our sys-

tem.

The IoT gateway serves as an intermediate storage node at the

front of the storage layer. The gateway can push the chunks in a

FIFO principle into the storage layer to maintain a reasonable local

storage size. Hence, the IoT gateway serves as a cache of recent data

items for on the gateway hosted apps and could as well be queried

by services in network proximity to the IoT gateway. Current IoT

apps, first push all new data to the cloud and then fetch them again

for presentation (e.g., FitBit), introducing an unnecessary latency.

For the distributed storage, we rely on a P2P overlay routing tech-

nique and a Distributed Hash Table (DHT) as our general-purpose

private key-value data store interface. The DHT serves as a scalable,

self-managing storage with high availability (i.e., robust against tar-

geted communication outages or malicious attacks in case of central

servers). The DHT in general enforces replicated and randomized

storage across a 160-bit address space. However, we rely on the

sloppy hashing technique [10, 11] to augment our instantiation of

DHT [4, 17] with locality. To this end, chunks are stored/replicated

on nodes that are closer to the services or the data owner.

How to financially incentivize participation in a distributed stor-

age is out of the scope of this paper. Several researchers and a

few start-ups propose systems where users can make money with

“renting out" their local storage space [27–29]. For instance, proof-

of-retrievability [29] can be used as a mechanism to reward users

1
Fitbit heart rate & fitness wirstband: www.fitbit.com/charge2

2
Ava: ovulation tracking bracelet: www.avawomen.com

www.fitbit.com/charge2
www.avawomen.com

who store more files for a longer time. Moreover, the reward en-

courages storage nodes to follow the protocol correctly, for example

with regards to enforcing the access permissions.

3.3 Privacy & Security Analysis
For an adversary to alter access permissions in the blockchain it

requires forging a digital signature or gaining control over the

majority of the compute power in the blockchain network. The

former is prevented with the security of signatures and the latter

with the consensus protocol in the blockchain (i.e., proof-of-work)

and its decentralized nature. Moreover, an adversary is not capable

of learning sensitive information from the public blockchain, since

only pseudo-identities and stream identifiers are stored there. Data

chunks are encrypted, integrity protected, and authenticated. An

adversarywith access to encryption keys cannot alter stored chunks,

as it requires gaining access to the public-private key pair of the

data owner. Even in case the owner’s key is leaked, chunks cannot

be modified due to the blockchain immutability (except for chunks

in the current interval). Rational storage nodes follow the protocol

correctly due to financial incentives (i.e., interplay of reward and

collateral)

3.4 Primary Evaluation
Initial evaluation results from our reference implementation in the

bitcoin blockchain (i.e., bitcoin testnet) show reasonable overhead.

For instance, augmenting Amazon’s S3 storage with our system’s

access control results only in a slowdown of 10% in request through-

put. In comparison, a distributed storage with more than 1000 nodes

experiences a factor of 2 slowdown, dominated by the routing. This

slowdown is the worst-case scenario with no locality-awareness in

storage of data. Store and get procedures for individual chunks re-

quire 150 ms, assuming no local caching. We are currently working

on thoroughly evaluating our system and analyzing the perfor-

mance of several real-world IoT applications on top of it.

4 RELATEDWORK
In this section, we briefly review a subset of relevant work to our

system.

Data Privacy & Access Control. The current dominating ap-

proach for sharing data in the web services is based on the OAuth

protocol [16] where a central trusted entity enforces user-defined

access policies (does not fullfil R1). Sieve [30] addresses these short-
comings with a combination of key-homomorphic and attribute-

based encryption schemes. Many applications employ anonymized

data collection [26] as an attempt to protect personally identifiable

information. However, researchers have demonstrated effective de-

anonymization techniques [20] which work even with a small set

of high dimensionality data.

Blockchain. In recent years, a new class of blockchain technolo-

gies have emerged that utilize the accountable computing and au-

ditability of blockchains for other domains. Blockstack [2] intro-

duces the concept of virtualchains and proposes a decentralized

server-less DNS. Blockstack extends to a decentralized public key

distribution system and registry for user identities. Storj [29] and

FileCoin [27] (secure successor of IPFS [15]) introduce a distributed

object storage. They are both targeted for archiving files and lack

sharing features. Enigma [33, 34] is the closest to our approach

in that it uses the blockchain for access control and enables shar-

ing of off-chain stored data. However, Enigma stores data access

logs within the blockchain, without addressing the consequential

scalability issues. Moreover, their system does not accommodate

for IoT stream data (not satisfing R3). Our approach is inspired by

the above approaches, however, our focus on IoT data leads to a

number of important design differences.

IoT Storage. A few of our design decisions regarding IoT data

streams are inspired by Bolt [13]. Bolt presents chunking of IoT

data for performance gain and protects confidentiality of chunks.

However, Bolt relies on the cloud-centric model (does not address

R1). “The Cloud is Not Enough" [32] discusses the pitfalls of the

cloud-centric IoT and advocates a data-centric approach. They leave

concrete system proposals for future work.

5 CONCLUSION
In this paper, we introduce the primary design of a distributed

secure data storage system targeted for the Internet of Things. Our

system allows for fine-grained access control and sharing of time-

series sensor data of various IoT applications. Initial performance

evaluation results are promising and show a moderate overhead

due to our system. We are currently in the process of finalizing

a complete reference implementation of our system and building

several IoT applications on top of it.

REFERENCES
[1] Ethereum White-Paper. Online: https://github.com/ethereum/wiki/wiki/

White-Paper, 2017.

[2] Ali, M., Nelson, J., Shea, R., and Freedman, M. J. Blockstack: A Global Naming

and Storage System Secured by Blockchains. In USENIX ATC (2016).

[3] Ateniese, G., Fu, K., Green, M., and Hohenberger, S. Improved Proxy Re-

encryption Schemes with Applications to Secure Distributed Storage. In Sympo-
sium on Network and Distributed System Security (NDSS) (2005).

[4] Baumgart, I., and Mies, S. S/Kademlia: A Practicable Approach Towards Secure

Key-based Routing. In IEEE International Conference on Parallel and Distributed
Systems (2007).

[5] Blaze, M., Bleumer, G., and Strauss, M. Divertible Protocols and Atomic Proxy

Cryptography. In EUROCRYPT (1998).

[6] Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J. A., and Felten, E.W.

SoK: Research Perspectives and Challenges for Bitcoin and Cryptocurrencies. In

IEEE Symposium on Security and Privacy (2015).

[7] Cachin, C. Architecture of the Hyperledger Blockchain Fabric. In Workshop on
Distributed Cryptocurrencies and Consensus Ledgers (2016).

[8] Castro, M., and Liskov, B. Practical Byzantine Fault Tolerance and Proactive

Recovery. ACM Transactions on Computer Systems (TOCS) 20, 4 (2002), 398–461.
[9] Courtois, N. T., and Mercer, R. Stealth Address and Key Management Tech-

niques in Blockchain Systems. In ICISSP (2017).

[10] Freedman, M. J., Freudenthal, E., and Mazieres, D. Democratizing Content

Publication with Coral. In USENIX NSDI (2004).
[11] Freedman, M. J., andMazieres, D. Sloppy Hashing and Self-Organizing Clusters.

In International Workshop on Peer-to-Peer Systems (2003).
[12] Fu, K., Kamara, S., and Kohno, T. Key Regression: Enabling Efficient Key

Distribution for Secure Distributed Storage. In Symposium on Network and
Distributed System Security (NDSS) (2006).

[13] Gupta, T., Singh, R. P., Phanishayee, A., Jung, J., and Mahajan, R. Bolt: Data

Management for Connected Homes. In USENIX NSDI (2014).
[14] Hummen, R., Shafagh, H., Raza, S., Voig, T., and Wehrle, K. Delegation-based

Authentication and Authorization for the IP-based Internet of Things. In IEEE
International Conference on Sensing, Communication, and Networking (SECON)
(2014).

[15] Juan Benet. IPFS - Content Addressed, Versioned, P2P File System (DRAFT 3).

https://github.com/ipfs/papers, 2017.

[16] Lodderstedt, T., McGloin, M., and Hunt, P. OAuth 2.0 Threat Model and

Security Considerations. IETF, RFC 6819 (January 2013).

[17] Maymounkov, P., and Mazieres, D. Kademlia: A Peer-to-Peer Information

System based on the XOR Metric. In International Workshop on Peer-to-Peer
Systems (2002), pp. 53–65.

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ipfs/papers

[18] Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.

[19] Narayanan, A., Bonneau, J., Felten, E., Miller, A., and Goldfeder, S. Bitcoin
and Cryptocurrency Technologies. Princeton University Press, 2016.

[20] Narayanan, A., and Shmatikov, V. Robust de-anonymization of Large Sparse

Datasets. In IEEE Symposium on Security and Privacy (2008).

[21] Nelson, J., Ali, M., Shea, R., and Freedman,M. J. Extending Existing Blockchains

with Virtualchain. InWorkshop on Distributed Cryptocurrencies and Consensus
Ledgers (2016).

[22] Sasson, E. B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., and

Virza, M. Zerocash: Decentralized Anonymous Payments from Bitcoin. In IEEE
Symposium on Security and Privacy (2014).

[23] Shafagh, H., Hithnawi, A., Burkhalter, L., Fischli, P., and Duqennoy,

S. Secure Sharing of Partially Homomorphic Encrypted IoT Data. In ACM
Conference on Embedded Networked Sensor Systems (SenSys) (2017).

[24] Shafagh, H., Hithnawi, A., Dröscher, A., Duqennoy, S., and Hu, W. Talos:

Encrypted Query Processing for the Internet of Things. In ACM Conference on
Embedded Networked Sensor Systems (SenSys) (2015).

[25] Sia. Sia: Decentralized Private Cloud. https://siawiki.tech/, 2017.

[26] Sweeney, L. k-anonymity: A Model for Protecting Privacy. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 05 (2002), 557–570.

[27] Techical Report. Filecoin: A Cryptocurrency Operated File Network. http:

//filecoin.io/filecoin.pdf, 2014.

[28] Techical Report. MaidSafe: Project Safe. https://github.com/maidsafe/

Whitepapers, 2014.

[29] Techical Report. Storj: A Peer-to-Peer Cloud Storage Network. https://storj.io/

storj.pdf, 2016.

[30] Wang, F., Mickens, J., Zeldovich, N., and Vaikuntanathan, V. Sieve: Cryp-

tographically Enforced Access Control for User Data in Untrusted Clouds. In

USENIX NSDI (2016).
[31] Zachariah, T., Klugman, N., Campbell, B., Adkins, J., Jackson, N., and Dutta,

P. The Internet of Things Has a Gateway Problem. In Proceedings of the 16th
InternationalWorkshop onMobile Computing Systems and Applications (HotMobile)
(2015).

[32] Zhang, B., Mor, N., Kolb, J., Chan, D. S., Lutz, K., Allman, E., Wawrzynek,

J., Lee, E., and Kubiatowicz, J. The Cloud is Not Enough: Saving IoT from the

Cloud. In USENIX HotCloud (2015).

[33] Zyskind, G., Nathan, O., and Pentland, A. Decentralizing Privacy: Using

Blockchain to Protect Personal Data. In IEEE Security and Privacy Workshops
(2015).

[34] Zyskind, G., Nathan, O., and Pentland, A. Enigma: Decentralized Computation

Platform with Guaranteed Privacy. arXiv (whitepaper) http://www.enigma.co/

enigma_full.pdf, 2015.

https://siawiki.tech/
http://filecoin.io/filecoin.pdf
http://filecoin.io/filecoin.pdf
https://github.com/maidsafe/Whitepapers
https://github.com/maidsafe/Whitepapers
https://storj.io/storj.pdf
https://storj.io/storj.pdf
http://www.enigma.co/enigma_full.pdf
http://www.enigma.co/enigma_full.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Cloud
	2.2 IoT Ecosystem
	2.3 Blockchain

	3 System Design
	3.1 Control Plane
	3.2 Data Plane
	3.3 Privacy & Security Analysis
	3.4 Primary Evaluation

	4 Related Work
	5 Conclusion
	References

